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I FOREWORD(

This final report describes the research performed during the past year on

adaptive antenna techniques. The research included new work on the topic of

signal cancellation in adaptive arrays as well as a further investigation of

Ipower-separation techniques that was begun under a prior contract (N00019--

78-C-0276) with the Naval Air Systems Command. The report has been divided

into two parts to reflect the difterent thrusts of the new and the continuing

investigations.

Part I of the report is concerned with the phenomenon of signal cancella-

tion that occurs in standard adaptive beamformers when the environment

demands rapid adaptation. The signal-cancellation effect that results from

jammer/signal interaction with the adaptive beamformer is described and is

* likened to the notch-filtering effect that occurs in much simple adaptive noise

cancelling systems. Two different techniques that are currently being pursued

to alleviate signal cancellation are described, and simulation results are

presented that indicate significant peformance improvement over conventional

bcamformers.

Part 11 is based on a doctoral dissertation by T. Saxe and represents a

refinement of earlier work on adaptive power separators. This part discusses

*. the design of adaptive power separators for discriminating between powerful

- jammer signals and a weaker desired signal. Three different single-channel.

low-power-pass adaptive separators are analyzed. Each structure consists of a

i power-spectrum estimator, a filter designer that analyzes the power spectrum

and designs filters that reject frequencies where the spectral estimate exceeds

a srk ctcd- threshold, and a filter that actually processes the input to reject

po-crtul spertral components.
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I PART I
I

JAMMING OF ADAPTIVE ARRAYS BY SIGNAL CANCELLATION:

THE PHENOMENON AND TWO REMEDIES

e*.1
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- I. INTRODUMTON(

* ~ Adaptive antennas have been under development in various forms during

the past two decades or so. Although adaptive antennas have only been used in

* small numbers thus far, they have proven themselves capable of rejecting jam-

ming signals to an extent that is unprecedented. Most high performance radar

and communications systems being designed to work in jamming environments

* currently incorporate adaptive antennas. The development of spread spectrum

techniques 'Simultaneously with adaptive antennas provides a formidable set of

technologies for jam resistant systems. These technologies are compatible and

are frequently used in 'the same system. An adaptive antenna is relied upon to

attenuate strong jamming signals as they appear at the receiver "front end."

Spread spectrum techniques are used to neutralize large numbers of weak jam-

mers that may not be eliminated totally by the adaptive antenna.

The question arises, are adaptive antennas susceptible to certain jam-

mers? Or, stated differently, can jammers be devised specifically for use

* against adaptive antennas? Under certain circumstances, the answer to this

question is yes: This paper is concerned with jamming signals that could defeat

or partially defeat known adaptive antenna algorithms. The existence of jam-

mers that could trouble known adaptive arrays motivates the development of

new adaptive signal processing and array processing algorithms, two of which

* - are proposed herein.

The goals of this paper are threeftold:

%(a) Examine the signal cancellation phenomenon in adaptive beamtorm-

ers.

[(b) Formulate approaches toward the elimination of the adaptive signal

cancellation phenomenon, based on the work of K. Duvall.



(c) Introduce spatial dither algorithms for the purposes of combating sig-

nal cancellation and modulating "smart" jammer signals at the receiv-

ing array.

19. SIGNAL CANCELLATION JAMMING

Any adaptive beamformer, either the Howells-Applebaum, sidelobe canceller

[1,2]. Widrow's pilot signal beamformer [3], Griffith's beamformer [4]. Frost's

beamformer [5], Zahm's beamformer [6] or combinations and variations of

these, is susceptible to attack by a simple jammer which may be band-pass

noise, or a sinusoid, or a sum of sinusoids suitably spaced in frequency. The

interaction of such jammers with the desired signal in these adaptive algo-

rithms can cause cancellation of signal components, even when these adaptive

* beamformers are working perfectly.

To understand how this comes about, consider the Frost beamformer which

functions in the following manner. A beam is formed toward a user selected

"look direction." The receiving sensitivity in this direction is then constrained.

* A typical constraint is one that forces the array to have a unit gain magnitude

and zero phase over a selected passband of frequencies in the look direction.

The beamformer is adapted (its weights are varied) to minimize its output

power, subject to the constraint which sustains the beam in the look direction.

Adaptation subject to the constraint causes the array to accept a signal with

gain one if this signal arrives from the look direction, and causes any other sig-

* " nals, jammer signals for example, to be rejected as well as possible (in the

* mnnimum total power sense) so long as they do not arrive from the look direc-

tion. Other adaptive beamformers behave more or less like the Frost beam-

former except that the Frost algorithm imposes a "hard" constraint on the sig-

r . nal gain in the look direction. The Widrow and Criffiths beanforners create

- "soft" constraints in this direction. The Howells-Applebaum and Zahm
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[ bearnformers apply soft constraints omnidirectionally rather than along a look

direction.

L Suppose that the Frost beamformer has a sinusoidal input signal arriving

*from the look direction. This signal should appear at the beamformer output,

going through a unit gain. Now suppose a jammer is turned on. a very strong

sinusoidal jammer at the same frequency as the signal and arriving off the look

direction. The jamming sinusoid would normally be rejected by the adaptive

beamformer, if the signal were not present. But with signal present, minimiz-

ing the total output power will cause the jammer to be admitted with just the

right magnitude and phase to cancel the sinusoidal signal. Thus, the signal

. sinusoid is admitted with a gain of one. On the other hand, just a trickle of the

, powerful jammer sinusoid is admitted to perfectly cancel the signal sinusoid

and produce a net output of zero. The output power is minimized and the con-

straint is preserved, as it should be with a perfectly working Frost beamformer.

But the result is loss of the signal. This amounts to jamming by sigmat cancel-

lation, rather than jamming by ove-whelming the signal with interference.

If the input signal in the look direction is broadband rather than sinusoidal

and the jammer is sinusoidal, the adaptive algorithm will modulate the

Isinusoidal jammer in such a manner that it will cancel some signal components

at the jammer frequency and at neighboring frequencies. If the jammer signal

- contains a sum of sinusoids at spaced frequencies within the passbands, the

output signal spectrum will be notched at each of the jammer frequencies.

This phenomenon could be troublesome for bandpass and spread spectrum corn-

munications.

This signal cancellation phenomenon has been observed and analyzed in

the context of simple adaptive noise cancelling systems, much simpler systems

than adaptive beamformers. A brief discussion and analysis of adaptive noise

ii -3-
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caclig follows.

[ II1. ADAPTIVE NOISE- CANCELLING

An~ adaptive noise canceller is shown in Fig. 1. In the terminology of that

field, the "primary input" contains a useful signal s, plus interference n.. The

"reference input" is separately obtained in practical systems. It contains

interference n 1, related to that of the primary input. The relationship between

the two interferences is generally unknown a priori. The adaptive filter has the

* job of shaping the reference interference to replicate (in the least squared

error sense) the primary interference so that subtraction will remove the

interference from the primary input and thereby deliver a much more useful

output. It has been shown in [7] that an adaptive filter minimizing mean

squared error, minimizes output power of the system of Fig. 1. This causes the

* system output to be a best least squares estimate of the useful signal s. The

* - Howells-Applebaum sidelobe canceller is more complicated than this in several

ways (useful signals and jammer signals appear at both primary and reference

inputs; spatial, i.e. array, processing is also involved), but -works basically on

* - the cancelling principle described above.

* If the reference input is a sinusoid, as shown in Fig. 2, then the signal flow-

* - path from primary input to the output behaves like a sharp, linear, time-

invariant notch filter. When first discovered, this was a surprise because the

adaptive filter itself is intrinsically nonlinear and time variable. An analysis, by

John Clover of the notch filter effect was presented in a 1975 Proceedings of the

- EfqE paper by Widrow, et al. on the subject of adaptive noise cancelling [7]. A

more detailed analysis is contained in Clover's Ph.D. thesis entitled "Adaptive

[ Noise Cancelling of Sinusoidal Interferences". Department of Electrical

Engineering, Stanford University, 1975 [8). A published work based on Clover's

thesis has since appeared [9]. This work treats both single and multiple notch

Ii -4-



cases. Analysis of the simplest case, a single notch created by a two weight

adaptive filter, is presented next.

IV. AN ADAPTIVE NOTCH FILTER

In this section. an analysis of the notch filter effect of the adaptive noise

canceller, is presented. This analysis deals with the formation of a notch at a

single frequency. Analytical and experimental results show, however, that if

I: more than one frequency is present in the reference input, a notch for each

frequency will be formed.

Figure 2 shows an adaptive noise canceller with two adaptive weights. The

primary input is assumed to be an arbitrary signal--stochastic, deterministic,

periodic, transient, etc. The reference input is assumed to be a pure cosine

£wave C cos(w. t +rp). The primary and reference inputs are sampled at the fre-

Iquency 0 = 27r/T rad/s. The reference input is sampled directly, giving xly, and

after undergoing a 900' phase shift, it is sampled, giving x2j- The samplers are

. synchronous and strobe at t = 0, T, 2T, etc.

* A transfer function for the noise canceller of Fig. 2 may be obtained by

S"analyzing signal propagation from the primary input to the system output.*

Weight updating in the system is carried out according to the LMS algorithm
4. (10,11]:

WI1.6. WI1 + gjl

i WZI.-1 =W 21 + (I)JX~

where the subscripts indicate the time index and 1A is a constant controlling the

rate of adaptation. Refering to Fig. 3, the sampled reference inputs are

*:t is not ob ious. from Inspection of Fi8. 2. that a transfer function for this propagation
" p'pth in fact cxists, Its existence Is shown. however, by the subsequent analysis.

dim

him-5



|=, C cos(, 0 jr+o). (2)

and

z2j = C sin(cj.jT+S#). (3)

The first step in the analysis is to obtain the isolated impulse response

j - from the error ej, point C, to the filter output, point G. with the feedback loop

from point G to point B broken. Let an impulse of amplitude a be applied at

, point C at discrete time j = k; that is.

ej = ad(j-k) (4)

The 6(j-k) is a Kronecker delta function, defined as

6(j.k)=1 for k (5)
( j 0. otherwise.

The impulse causes a response at point D ofI

J cxC cos(w0 kT+p), for j = k

0, otherwise,

which is the input impulse scaled in amplitude by the instantaneous value of

ijj at j = k. The signal flow path from point D to point E is that of a digital

integrator with transfer function 2/L/(z-1) and impulse response 2juu(j-1),

- where u(j) is the discrete unit step function

i j) 0={O. for j<0 (7)
1, for j _ 0.

.Convolving 2.uu(j-1) with r$xjj yields a response at point E of

-wj = 2ji C cos(c,0 kT+p,). (B)

where j k k + 1. When the scaled and delayed step function is multiplied by

1.j, the response at point F is obtained as

= 2/SC2 cos(,,.jT+,,) cos(w.k+y). (9)

i -6-6



i, I where j k + 1. The corresponding response at point J, obtained in a similar

manner, is

Vp = 2/LaC 2 sin(cj.j7'+e) sin(c,.kT+S). (10)

where j Z k + 1. Combining (9) and (10) yields the response at the filter out-

4 put, point G:

V4 = 21,a2C2 cos(r.T('-k))

= 2juxC~u(j-k -1) cos(c.T&j-k)).

Note that (11) is a function only of (j-k) and is thus a time invariant impulse

response, proportional to the input impulse.

A linear transfer function for the noise canceller may now be derived in

the following manner. If the time k is set equal to zero. the unit impulse

response of the linear time-invariant signal-flow path from point C to point G is

yj 2 Cu(j-1) cos(c.,jT). (12)

and the transfer function of this path is

C(z)= 2 / .z(z-cosa.'T) - 11
z- 2zcosrT + 1

2iC2 (z cos ,T-1) ()
z 2- 2z cos cj.T + 1

This function can be expressed in terms of a radian sampling frequency

fl= 2/T as

C(Z) = 2yuC 2[z cos(27rwf2 - 1) - 1 (14)
(2 - 2Z cos(27rc. 0 -1 ) + 1

If the feedback loop from point G to point B is now closed, the transfer function

E(z) from the primary input, point A. to the noise canceller output, point C. can

be obtained from the feedback formula:

z 2 - 2z cos(2enw° -1 ) + I
Z 2 2(1-jC 2 )z cos(2,rcj.()-1) + 1 - 21C 2

- 7-



Equation (15) shows that the noise canceller with a cosine reference input

has the properties of a notch filter at the reference frequency o along the sig-

nal flow path from primary input to output. The zeros of the transfer function

are located in the Z plane at

z = exp (±i2naCn-) (1)

and are precisely on the unit circle at angles of ±27riw - tad. The poles are

located at

z = (1-C 2 )cos(27Tw. - ) ±i[(1-2cX 2 ) - (1-pC 2 )cos2 (27- . 0 ')] " '2  (17)

The poles are inside the unit circle at a radial distance (I - 2AC 2)'' 2' approxi-

mately equal to I - j.C 2 , from the origin at angles of tq|

For slow adaptation (that is, small values of IC 2 ) these angles depend on the

factor

(1-2.cO)'  1 - 2ILC2

= (I 1 2 C4 +  )1/2

"= jI- 2C4 (18)

which differs only slightly from a value of one. The result is that, in practical

instances, the angles of the poles are almost identical to those of the zeros.

The location of the poles and zeros and the magnitude of the transfer func-

tion in terms of frequency are shown in Fig. 4. Since the zeros lie on the unit

circle, the depth of the notch in the transfer function is infinite at the fre-

quency .i= f.. The sharpness of the notch is detemined by the closeness of

the poles to the zeros. Corresponding poles and zeros are separated by a dis-



tance approximately equal to /C 2 . The arc length along the unit circle (cen-

tered at the position of a zero) spanning the distance betwcen half-power points

is approximately 21 C2 . This length corresponds to a notch bandwidth of

I.(BiF) = zOT
= 2tC 2rF Hz, (19)

where F is the sampling frequency in Hz. The Q of the notch is determined by

the ratio of the center frequency to the bandwidt.h.

Q WO 7T (20)

The time constant of the mean square error "learning curve" for the LMS

algorithm has been shown to be [6.91

"=Tins 4----r-c Riterations, (21)4y trace R

where R is the covariance matrix of the inputs to the weights, and n is the

number of weights, Formula (21) applies when the eigenvalues are all equal. :1

This is the ease for the system of Fig. 2. Multiplying by the sampling period T,

the time constant is expressed in seconds of real time as

S- 4 --c Rsec. ( 2 2)
4y t race R

For the two-weight adaptive filter of Fig. 2.

Tace R = C2 + C2

2 2

= C2 . (23)

This is the sum of the power into the weights. Combining equations (23). (22).

and (19) yields

(Bw) = HZ. (24)Trase

ThIs, the bandwidth of the notch is the reciprocal of the time constant of the
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tance approximately equal to jsC 2. The are length along the unit circle (cen-

tered at the position of a zero) spanning the distance between half-power points

is approximately 2uC2 . This length corresponds to a notch bandwidth of

(Bl) = 11C 20/ni

= 2IC 2F Hz, (19)

where F is the sampling frequency in Hz. The Q of the notch is determined by

the ratio of the center frequency to the bandwidth.

Q W, 7T (20)

The time constant of the mean square error "learning curve" for the LMS

algorithm has been shown to be [6.9]

77rS - iterations, (21)
4y trace R

where R is the covariance matrix of the inputs to the weights, and n is the

number of weights. Formula (21) applies when the eigenvalues are all equal.

This is the case for the system of Fig. 2. Multiplying by the sampling period T,

the time constant is expressed in seconds of real Lime as

Trnse 4L trace R sec. (22)

For the two-weight adaptive filter of Fig. 2.

trace R = 1C2 + 1C2

2 2

= C 2 . (23)

This is the sum of the power into the weights. Combining equations (23). (22),

and (19) yields

(BIV) - Hz. (24)

Thus, the bandwidth of the notch is the reciprocal of the time constant of the
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learning process, for the simple system of Fig. 2.

Figure 5 shows the results of two experiments performed to demonstrate

that the adaptive system acts like a notch filter. In the first, the primary input

was a cosine wave of unit power stepped at 512 discrete frequencies. The refer-

ence input was a cosine wave with frequency w, of T/2T rad/s. The value of C

was 1. and the value of ii was 1.25 x 10-2 . The frequency resolution of the fast

Fourier transform was 512 bins. The output power at each frequency is shown

in Fig. 5(a). As the primary frequency approaches the reference frequency,

significant cancellation occurs. The weights do not converge to stable values

but "tumble" at the difference frequency,* and the adaptive filter behaves like a

modulator, converting the reference frequency into the primary frequency.

The theoretical notch -idth between half-power points. 1.59 x 10-2 w.. compares

closely with the measured notch width of 1.62 x 10-2 W'.

In the second experiment, the primary input was composed of uncorrelated

samples of white noise of unit power. The reference input and the processing

parameters were the same as in the first experiment. An ensemble average of

4096 power spectra at the noise canceller output is shown in Fig. 5(b). An

infinite null was not observed in this experiment because of the finite fre-

quency resolution of the spectral analysis algorithm.

In these experiments, the filtering of a reference cosine wave of a given

frequency caused cancellation of primary input components at adjacent fre-

quencies. This result indicates that, under some circumstances, primary input

components may be partially cancelled and distorted even though they are not

correlated with the reference input. In practice this kind of cancellation is of

concern only when the adaptive process is rapid; that is, when it is effected with

*Whe-n the primary and reference frequencies are held at a constant difference, the weights

develop a sinusoldal steady state at the difference frequency. In other words, they converge
on a dynamic rather than a static solution.

-10-
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j large values of u. When the adaptive process is slow, the weights converge to

values that are nearly fixed, close to the Wiener solution, and though signal

cancellation as described in this section occurs, it is generally not significant

1I due to the fact that the notch is extremely narrow. In any event, the primary

input appears at the output having gone through a notch filter.

V. SIGNAL CANCELLATION PHENOMENA

WITH A FROST ADAP'IVE IBEAMFORMER

IFigure 6 shows the antenna array and Frost beamformer that were used in

the series of computer simulation experiments to be presented below. The sig-

nal was assumed to be incident from broadside and the look direction con-

jstraint was set to unit gain and zero phase from zero frequency to half the sam-

pling rate, i.e. to a flat response over all frequencies. The jammer was

Isinusoidal at one quarter the sampling frequency. In these experiments,

ambient noise and receiver noise were negligible. A typical converged beam

pattern is shown in Fig. 6, plotted at the jammer frequency. Only half the syrn-

jmetrical pattern is plotted. One can see that the look direction gain is unity,

and that the gain in the jammer direction is .019, 34 dB below the main beam

Igain. Observation of the beam pattern gives the appearance that the beam-

former is working perfectly. [
A bandpass signal was received by this adaptive beamformer whose spec-

trum is shown in Fig. 7(a). The spectrum of the sinusoidal jammer is shown in

Fig. 7(b). The output signal spectrum is shown in Fig. 7(c). The input signal

1 appears at the output having gone through a notch filter. The notching effect is

Ievident in the output signal spectrum and is indicative of gross signal distor-

tion at the beamformer output. The notch width is not exactly equal to the

reciprocal of the learning curve time constant, but exceeds it by a factor of 2.

1: -11-



The conditions for the derivation of the notch width formula (24). i.e..

sinusoidal signals appearing with exact 90° separation at the inputs to the two

weights, are not precisely met with the 16-weight Frost processor under the

above stated experimental conditions. Nevertheless, the simple formula (24)

does give at least an approximate prediction of notch width that is applicable at

most jammer angles.

The notching phenomenon in adaptive beamformers is somewhat more

complicated than in adaptive noise cancelling systems. The useful signal arriv-

ing from the look direction encounters a unit gain due to the main beam con-

straint. This is analogous to the direct primary signal path of Fig. 1. The jam-

mer signal arriving at other than the look direction encounters an adaptive

filter, analogous to the reference signal path of Fig. 1. The weights in the adap-

tive beamformer are not completely free as they are in the adaptive filter of

Fig. 1. The Frost constraint reduces the number of degrees of freedom to be

equal to the number of weights multiplied by the factor (k-1)/k. where k is

equal to the number of antenna elements. Also, the spatial processing effects

of the array and the multichannel structure of the adaptive processor intro-

duce differences in the dynamics of convergence between the adaptive beam-

former and the adaptive noise canceller.

Additional experiments were conducted with the system of Fig. 6. The jam-

mer was again sinusoidal, while the look-direction signal was composed of white

noise of unit power. The jammer power was varied. Spectra of the beamformer

outputs are shown in Fig. 8. With the jammer power set at its lowest level, the

signal cancellation notch is at its smallest bandwidth as is seen in Fig. Ba. As

the jammer power is increased and other parameters held constant, the notch

width increases. Figure 8(c) shows the widest notch for the strongest jammer

signal that was applied. In all of the illustrated cases, the relationship between

-12-



I" notch width and reciprocal adaptive time constant has been preserved.

The results of another experiment are shown in Fig. 9. Here. the signal was

white, and the jammer was a strong bandpass noise. Signal components were

partially cancelled over the entire jammer spectral band. corresponding to

extensive signal distortion. It should be realized that results of this type would

I only occur in cases of very rapid adaptation. For the experiment of Fig. 9. the

time constant of the adaptive process was approximately equal to 20 sampling

periods. The bandwidth of the jammer was approximately equal to 15% of the

sampling rate.

Two remedies to the signal notching or cancellation problem will be dis-

* cussed. The first is a method devised by K. Duvall based on the use of two signal

processing systems, one to perform the adaptation, the other to generate the

system output signal.

.VI THE DUVALL BEAMFORMER

In order to prevent signal cancellation, the useful signal arriving from the

look direction is excluded from the beamformer in which the adaptive process

takes place. In the system shown in Fig. 10. the adaptive process is only used to

derive a set of weights. These weights are copied into a separate, identical

"slaved" processor used to form the output signal. The adaptive process could

. be the Frost algorithm, as indicated in Fig. 10. or it could be any one of a

number of adaptive bearnformer algorithms that have appeared in the litera-

S"ture.

The antenna array elements in Fig 10 are assumed to be uniformly spaced

along a line. It is clear from the block diagram shown in this figure that.

Ibecause of the subtractive preprocessing, the look direction signal will not

- appear at the Frost adaptive beamformer inputs but that the jammer signals

-13-



will be present as indicated. Receiver noise and ambient noise are neglected in

this discussion. The Frost algorithm will null jammer J. The strength and char-

acter of signal S will have no effect on the weights. Copying the weights will

cause the slaved processor to have a main beam which conforms to the Frost

constraints established for the look direction, and to have a null in the exact

direction of the jammer J. The correct alignment of the null is assured since

the relative phases of the jammer components are the same in the slaved

beamformer as in the Frost adaptive beamformer, where the nulls originate.

The phasor diagram in Fig. 10 verifies this in accord with the following argu-

men t.

The jammer components received by the antenna elements are indicated

by a set of equal amplitude uniformly-spaced phasors JO. J1 , J 2 , J3, and J 4. The

phasor inputs to the Frost beamformer are JI-JO. J 2 -J 1, J3 -J 2 . and J 4 -J.

They too are uniform-amplitude, equally-spaced, and separated by the same

angles as the received jaminer components JO, J 1, J2. J3 , and J4. Since the

relative phase angles are the same in the slaved processor as in the Frost pro-

cessor, the beam pattern notch is formed at the proper bearing angle.

The Duvall bearnformer uses a standard adaptive beamformer as one of its

components. Beam steering in any direction can be accomplished simply by

including beam steering delays in the antenna circuits. Phase shifters would

be adequate for narrowband processes; delay lines would be required for broad-

band processes. It should be noted that although the phasor argument applies

only to one jammer at one frequency, linearity and superposition show that the

principle is applicable to multiple jammers and to broadband as well as to nar-

rowband jammers and signals.

Experiments have been performed with this system, and results are given

in rigs. 11 and 12. Figure 11 compares the output spectrum of the Frost beam-

-1A-
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former with that of the Duvall beamformer (using a Frost beamformer), both

adapting with a time constant of .05, with the same array and with the same sig-

nal and jammer. The array and jammer were as shown in Fig. 6. After perform-

ing the comparative experiments, the Frost beamformer showed evidence of

strong signal cancellation, while the Duvall beamformer showed no evidence of

Is signal cancellation. In the time domain, Fig. 12 compares the look-direction

input signal with the output signals of the Frost and Duvall beamformers. In

both cases the weights were initialized to zero, and adaptive transients are visi-

ble at the beginnings of the output tracings. Beyond the region where the tran-

sient exists, substantial signal distortion in the Frost beamforrner output is

• present. The distortion power was measured to be 6 dB below the input signal

power. Such distortion is not apparent at the output of the Duvall beamformer.

Here the distortion was measured to be 110 dB below signal level.

IThe Duvall beamformer appears to be an important development toward

mitigating the effects of signal cancellation. It is. however, a recent develop-

Iment, and possible limitations on its performance have yet to be assessed.

Effects of component inaccuracies and array imperfections are not yet under-

stood. How to use it with other than straight line, evenly spaced arrays is not

j yet determined. Other methods for eliminating or reducing signal cancellation

effects are also being pursued, such as spatial dither algorithms.

VII. SPATIAL DITHER ALGORITHMS

I Spatial dither algorithms have been newly conceived for the purpose of

" applying locally controlled modulation to signals arriving at angles other than

the look direction while leaving inputs from the look direction unmodulated

! and undistorted. The effect is to cause jammer power to be spread spectrally,

thereby reducing jammer power density. When used with a conventional adap-

I . tive beamformer, spatial dither reduces signal cancellation effects. The same

i - 15-
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process has the additional capability or modulating a "smart" jammer signal in

a way that is totally unpredictable to the jammer, thus in many cases render-

ing it "less smart."

A conceptually simple form of spatial dither algorithm is the "3/4-inch ply-

wood" approach, pictured in Fig. 13. The elements of an antenna array may be

imagined to be fixed to a piece of plywood which provides a rigid insulating sup-

port, so that the entire array may be moved mechanically. In either one or two

dimensions, the array is moved in directions which are orthogonal to the look

direction. Far-field emanations arriving from the look direction will be undis-

torted by the mechanical motion, while emissions from off axis sources will be

distorted by an unusual shift-of-time-base form of modulation. (Electronic

means of implementation of this spatial dither process are being devised.)

The outputs of the antenna elements of Fig. 13 could be applied to a time

delay and sum (nonadaptive) beamformer, to a conventional adaptive beam-

former, or to a Duvall adaptive bearnformer. Spatial dither could be beneficial

in each case. By reducing jammer power density, some antijam protection is

provided without adaptive beamforming, and additional antijam protection is

provided with adaptive beamforming. Reduction of signal cartcellation effect in

a Frost beamformer can be obtained by using spatial dither preprocessing.

Breakup of jammer signal structure is a possible form of signal preprocessing

- -applicable to all types of adaptive and nonadaptive beamformers.

The 3/4-inch plywood approach has been computer simulated, and results

arc presented in Fig. 14. The motion was random and was done along a line per-

pendicular to the look direction. At every fourth sample time, the plywood posi-

tion was switched the new position was drawn randomly from a uniform distri-

bttion which ranged from zero to eight wavelengths. Figure 14(a) shows the

tpcctrum of the look-direction input signal, in this case a random bandpass sig-

L8
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nal. The sinusoidal jammer spectrum is shown in Fig. 14(b). The spectrum of

the jammer from the physical reference frame of the array is shown in Fig.

14(c). It is clear that the jammer power is greatly spread, that jammer power

density is significantly reduced, and that the jammer signal is severely dis-

torted from its original form. In the simulation. bandpass filters were used with

each antenna output to represent the effects of a receiver for each antenna.

The filtered signals were then applied to a conventional Frost adaptive beam-

former. Some signal distortion is evident, but the amount of distortion is

greatly reduced by the spatial dither. The output spectrum shown in Fig. 14(d)

is far less distorted than that of Fig. 7(c). a comparable spectrum obtained

without spatial dither.

VIII. CONCLUSION

Signal cancellation effects occur in conventional adaptive beamformers

when jammer power and adaptation rate are high. These effects can cause sig-

nal loss in the case of narrowband signals or cause significant signal distortion

in the case of wideband signals. Means of combatting signal cancellation have

been proposed, namely the Duvall beamformer and the spatial dither algorithm.

The latter approach will probably not be as effective as the former against sig-

nal cancellation but has the capability of destroying "sn art" jammer signals.

-17-
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PART I I

ADAPTIVE POWER SEPARATORS 
'

Timothy Saxe



* - 4

1 -- INTRODUCTION

An adaptive power separator (APS) is an adaptive filter that

discriminates between signals on the basis of their powers. There are

i different varieties of APS. Some pass low power signals and reject high

power signals (low-power pass APS), some pass only high power signals

(high-power pass APS), and others pass only signals with power within a

specified range. A low-power pass APS could be used in the "front end"

of a radio receiver to eliminate powerful signals from nearby trans-

_ mitters while still passing weak signals from distant transmitters. Of

course, a single channel APS cannot distinguish between two signals that

overlap spectrally.

(" This paper develops and analyses three different single channel

low-power pass adaptive power separators. Therefore, in this paper the

term adaptive power separator is understood to mean a single channel

power separator that passes only low power signals. However, the power

separators developed in this paper can be easily altered to pass high

power signals or even signals in a specified power range.

Previous workers in the field of adaptive filtering [Wid, Zah,

Tre, Che] have noted that some adaptive filters have a property

called power inversion. Power inversion is a weak form of power separa-

tion in which signals with high power at the input to the adaptive system

"ave less output power than signals with low input power. However, the

transition from low gain to high gain is not sharp so these filtersK. cannot discriminate between two signals that have nearly the same power.

30I



The purpose of this work is to develop an APS with a sharp transition

that will be able to discriminate between two signals with nearly the

same power.

Any APS is a nonlinear system. However, all of the adaptive power

separators described in this work become iinear filters if the adaptive

process is stopped. The adaptive process produces linear filters that

use frequency discrimination to reject high power signals. Consequently,

a single channel APS cannot discriminate between two signals that over-

lap in frequency. This limitation may be overcome by using a multi-

channel APS if the signals are spatially separated. For example, an APS

built into an antenna array could discriminate between two signals

provided that they either had different angles of arrival-or they did

not overlap in frequency.

(

1,.
t
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2 -- PREVIOUS WORK: THE LALE APS

The single channel adaptive system which is called the adaptive

(spectral) line enhancer (ALE) was first proposed by Widrow [Wid2]

for the detection of sinusoidal components buried in noise. He showed

that the gain of the ALE was a function of'the signal-to-noise ratio.

Thus the ALE can be used as an APS. However, the threshold power* of

the ALE is difficult to control since it is a function of the input

noise power as well as the signal power. Widrow and Treichler [Wid3,

Wid4, Tre] proposed a modified ALE, called the "leaky" ALE (LALE), that

algorithmically simulates the effect of added input noise without

actually adding noise to the input. By this means the effective signal-

to-noise ratio, and hence the threshold power of the LALE, can be

controlled by altering a parameter of the adaptive process. Thus the

LALE is an APS with a selectable threshold power.

In this chapter we will analyze the performance of the LALE and

show that it can be used as a either a high-power pass APS or a low-

power pass APS. A brief intuitive explanation of the LALE is presented

first to aid in understanding the mathematical analysis of the LALE.

As was mentioned earlier, the ALE can be used as an APS. Since

the ALE is simpler to understand than the LALE, we will first study the

operation of the ALE. Figure 2-1 shows a block diagram of an ALE.

The heart of the ALE is the LIIS (Least Mean Square) adaptive filter

The threshold power of an APS is defined as the signal power for
which the voltage gain of the APS is 1/2.

32
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I

[Wid]. An LIS filter is a finite impulse response filter that tries to

f form the best least squares fit between its input signal (x(k) in the

ALE) and the primary input (d(k) in the ALE). The "error" output,

which is the difference between the primary input and the adaptive

filter's output, measures how successful the filter has been in matching

its input to the primary input. The "error" output is used as an

auxiliary input to the LMS filter so that the adaptive algorithm can

decide how to modify the transfer fun'ction of the filter to reduce the

mean square error.

We can analyze the performance of the ALE without knowing how the

LMS filter actually reduces the mean square error. For the sake of

simplicity, assume that the input to the ALE consists of a sinusoid in

white noise. The input to the adaptive filter, x(k), is a delayed

version of the primary input, d(k). Therefore the "error" signal, e(k),

is the sum of three terms: 1) noise in the primary input, 2) noise

passing through the adaptive filter, and 3) a sinusoidal component. The

significance of the delay between d(k) and x(k) is that the adaptive

filter cannot match the noise in its input with the noise in the primary

input, but can match the sinusoidal component by generating the appro-

priate gain and phase at the frequency of the sinusoid. To minimize

the mean square error, the adaptive filter will try to pass as little

noise as possible while also passing the sinusoid with the appropriate

gain and phase.

i- A filter with a sinusoidal weight vector, at the same frequency

as the input sinusoid, will have a bandpass characteristic at the

frequency of the input sinusoid and minimum bandwidth. This is exactly

34
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the form that the ALE requires, so we assume that the weight vector of

the LHIS filter is:

(W]i = a Cos(wi + p) i = 0, 1, .. n-I

where

w is the angular frequency of the sinusoidal input

n is the number of filter weights

(Treicher [Tre] shows analytically that this is indeed the form of the

weight vector). A filter with this weight vector has a gain of -a

and phase shift of @ at frequency w, and a bandwidth of 2/n. Thus if

the power of the input sinusoid is P and the power of the input noise

22is a2, then the power at the "error" output is:

P 2 + a2 (a a)
2 22 + P1 I - a ejie-JwA rTT

2

The LMS filter will converge to (a*,O*) the values for which the error

power is minimum

P n n

2 2- SNR
a* P n n1 +--2 1 + -Y SNR

= wAT

where

SNR = P/a2  = signal to noise ratio

T = sampling period (

35



't low SNR, i.e. low signal power for fixed noise power, the gain (
2( a) is low, but for high SNR the gain tends to one. Thus the ALE

is a high-power pass APS because it passes strong signals better than

weak signals. Figure 2-2 shows the transfer function of an ALE for

several different SNR's. Incidentally, Treichler [Tre] has shown that

the response to several sinusoidal inputs is the superposition of the

response to the individual sinusoids provided that the frequencies of

all the sinusoids differ by more than I/nT Hz (where T is the sampling

period).

A deficiency of the ALE is that the response depends upon the

signal to noise ratio, not the signal power. Widrow and Treichler

[Wid3l proposed adding noise to the input of the ALE, which would allow

the designer to control the signal to noise ratio and thereby control

the characteristics of the ALE. Of course this technique makes the out-

put of the ALE more noisy and increases the variance of the LMS filter's

weights, which modulates the output signal. However, since the

characteristics of the injected noise are known, the effects of the

noise upon the LMS algorithm can be computed. These effect can then be

incorporated into the L.IS algorithm [Gri, Wid4, Tre] which results, in

the case of white noise added to the input, in the leaky LMS (LU1S)

algorithm. The advantages of using the LLMS algorithm instead of

injecting noise are a less noisy output, less weight variance, no need

to build a noise generator and the LLMS algorithm can act as if noise

with negative power were added to the input. For convenience we will

refer to "algorithmic noise" when we mean the noise effects that are

incorporated into the LLMS algorithm.
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By altering a parameter of the LLMS filter the designer can control (

the power of the "algorithmic noise." This permits the designer to

control the effective SNR (effective SNR is the signal power divided by

the sum of the actual input noise power and the "algorithmic noise"

power), and thereby control the characteristics of the LALE. Thus the

LALE is a high-power pass APS with a controllable characteristic.

The rest of this section is devoted to a more comprehensive and

quantitative analysis of the LALE. This analysis is based on Treichler's

[Tre] extensive analysis of the ALE with appropriate modifications to

account for the changes between the LMS (Least Mean Square [Wid])

algorithm used in the ALE and the LLMS (Leaky LMS) algorithm used in

the LALE. While the analysis is for the most part general, assumptions

about the inputs are required to obtain insight into the solutions for

the LALE weight vector. In particular, the LALE APS can be used to

reject high-power, narrowband interference (where narrowband means a

bandwidth significantly less than -where n is the number of LALEnT

weights and T is the sampling interval). Therefore we assume that the

input to the LALE consists of narrowband signals and white noise.

Treichler [Tre] showed that under these conditions the input to the

LALE can be modeled as one sinusoid per narrowband signal. Thus the

input to the LALE is modeled as a number of sinusoids in white noise-

38
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(
We start by defining various quantities in accordance with Figures

2-3 and 2-4:

x(k) = adaptive filter input at time k

X(k) = x(k), x(k-1), .... x(k-n+l)]T

= contents of tapped delay line at time k

W(k) = vector of n filter weighting coefficients

y(k) = XT (k)II(k)

= adapfive filter output

e(k) = d(k)-y(k)

= the "error" signal (drives the adaption)

d(k) = x(k+A)

= desired (or reference) signal

A = decorrelation delay time

The LLMS algorithm for modifying the weight vector is:

W(k+l) = vW(k) + 2e(k)X(k)

= [vI - 21pX(k)XT(k)]W(k) + 21d(k)X(k) (2-1)

where
v = an arbitrary constant (leak factor)

= 1 - 2 Vy

y = power of "algorithmic noise"

p = arbitrary constant which controls the rate of adaption and

the stability of the algorithm
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The average behavior of the LALE weight vector can be derived from (
equation 2-1 by taking the expected value of both sides of Eq. 2-1 and

ignoring the covariance between X(k)XT(k) and W(k) (this is an acceptable

approximation if is small [Sen, Dan]):

E{W(k+l)} [vl - 2UR(k)] E{W(k)} + 2jiP(k) (2-2)

where

(R(k)li, j = Efx(k-i) x(k-j))

= input autocorrelation matrix.

(P(k)]i = E{d(k) x(k-i)}

= desired-to-input cross
correlation vector

If the input, x(k), consists of one or more statistically
L

independent, zero-mean and stationary components, then R(k) = Rn+Rs

and P(k) = Pn+Ps, where Rn is the autocorrelation matrix associated

with the inputs whose correlation times are less than A and R is the

autocorrelation matrix associated with the inputs whose correlation

times are greater than A. If we assume that the incoherent components

can be modeled as white noise with power 2, then Rn =a 21. Finally,

• if A> I then P(k) = Ps since Pn is equal to zero (it is the autocor-

relation of white noise for lags greater than A). Provided that all of

these conditions hold, Eq. 2-2 can be written as:

* - E{W(k+l)} = [vI - 2t(021 + R )) ECW(k)} + 2uP s  . (2-3)

Since Rs is the autocorrelation matrix of a real valued stochastic

process, it is symmetric, Toeplitz, positive semi-definite and has a

(4
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full set of n orthonormal eigenvectors QO through Qn -1 [Gra]. These

eigenvectors can be used to form the modal matrix Q, where

Q = [Qo' "' Qn-1 ]  It is well known [Der] that the modal matrix has

the following properties:

TRsQ = A (2-4a)

TQ I (2-4b)

where A is the diagonal matrix of the eigenvalues of Rs

F denotes the complex conjugate of c

If a transformed weight vector is defined as W'(k) Q W(k) and if both

sides of Eq. 2-3 are premultiplied by QT, then:

E{W'(k)) QTE{w(k)} (

7J 2= Qvl - 2p( I+Rs)] QE{W-(k)} + 2peP (2-5)
s s

Equation 2-5 can be further simplified by using the relations given in

Eq. 2-4 and by defining C = T PS:

E{W'(k)} = CvI - 2p(a 2I + A)] E(W'(k)} + 2pC (2-6)

The transition matrix of this recursion expression is diagonal

since I and A are diagonal. Therefore the transformed weights, W'(k),

are uncoupled, so a separate scalar recursion expression can be written

%for each [E{W'(k))] i . The expression for the ith uncoupled weight is:

E{W'(k)}] i *= (v - 2V(a 2+Xi))[E(W'(k)}]. + 21,[Cl i  (2-7)

where A is the ith eigenvalue of R. (
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Incidentally, if v 1 -
2 py is substituted into Eq. 2-6, the

result is:

E{W'(k)) = [I - 2P([o2+y]I +A)] E{W'(k)} + 21sC (2-8)

Equation 2-8 shows that y affects the average weight vector in the

2
same way as a . Since the effects of y are analagous to the effects

of the white noise in the input, y is called the "algorithmic noise"

power. An LLMS filter with parameter y will have the same average

weight vector as a Wiener filter with noise of power y added to it'

input signal. In a similar vein, the term "effective .noise" power is

used to mean [02 + y], which is the sum of the actual input noise power

and the "algorithmic noise" power.

Using the definition of y, the scalar recursion for- the uncoupled

weights (Eq. 2-7) can be written as:

[E{W'(k))]i = [l - 2 1(a 
2 +y+Xi)][E{W'(k)}]i + 21j[C]) (2-9)

If the adaption constant W-is chosen so that

0 < 11 - 2p(o 2+y+Xi)I < 1 (2-10)

then each uncoupled recursion expression (Eq. 2-9) is stable, and

E{W-(k)) will converge to a value E{WJ(-)} which is independent of the

starting conditions. The converged value is:

[E{W'(-)}]i = [ i=O, 1, .... n-I . (2-11)

Reversing the coordinate transformation yields:

n-l [C).

E{W(-)} E Qi • (2-12)
i=O o + Y + XI

44



Equation 2-12 defines the expected value of the converged weight

vector. This definition is in terms of the eigenvectors of the input

autocorrelation matrix, the power of the true input noise, the power of

the equivalent noise and the power of the coherent signal comiponent.

To determine the response of the LALE to particular inputs requires

explicit solutions for the Qj and [C)i, and knowledge of a2 and y.

Since the input to the LALE can be modeled as multiple sinusoids in

white noise, Treichler's results [Tre] are useful. Treichler showed

that if the input consists of one or more sinusoids which meet the

following criteria: 1) frequencies are between 20% and 80% of the

Nyquist frequency (otherwise the two active eigenvalues degrade into a

single active eigenvalue), and 2) all sinusoids are separated in

frequency by at least n-T Hz (otherwise they interact instead of acting

independently), then for each sinusoid of power pi and frecrjency w, the

following approximations hold:

QI~ -n [eJi T .. e(n-l)wiT] T

. [ eJi T  -j(n-1)wi TT
Qn-i e-j ... e

r iwTnfl

.C 4- XOWI
[i "TPi x(Ji )

I "Cn- ---"- PiExP(ip i )

Zn p (2-13) (
1 4i
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These results can be substituted into Eq. 2-12 to determine the average

weight vector of the LALE. Specifically, if the input to the LALE

consists of a single sinusoid of power p and frequency w in white noise

of power a2 , then

-E{W(-)1] P Cos[(i+A)wT] (2-14)
+ 2P

A filter with this weight vector has a bandpass characteristic with a

n

maximum gain of 2-- . at the frequency of the sinusoid. Figure
0 + y + 2

2-5 shows the transfer function of the LALE for several input powers.

The operation of the LALE is more conveniently described as a gain

characteristic (see Figure 2-6). The gain characteristic shows the

converged gain of the adaptive system at the frequency of the input

signal as a function of the signal's power. We see from Figure 2-4 that

J the LALE passes powerful signals and rejects weak signals and is thus a

high-power pass APS. If a low-power pass APS is required, the "error"

output of the LALE can be used instead of the "y" output. The "error"

output gain characteristic is shown in Figure 2-7.

The threshold power of an APS hereby defined as the input signal

power for which the gain of the APS is -. In the case of the LALE the

threshold power is -(a2+y). Now the input noise power a 2, is beyondn

the designer's control, but y is controllable since it depends on pJ and

v which are both parameters of the LLMS filter. Thus the threshold

power of the LALE is easily controllable. However, the transition from

high gain to low gain is gradual so the LALE is said to have a soft
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threshold or broad transition region. Because of the soft threshold a

LALE based APS cannot decisively discriminate between two signals with

nearly the same power.

(
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3 -- PRACTICAL SPECIFICATIONS FOR AN ADAPTIVE POe:ER SEPAPATOR.

Figure 3-1 shows the gain characteristic of leaky adaptive line

enhancer superimposed on the gait, characteristic of an ideal APS. The

gain characteristic of the ideal APS has unit gain for input power less

than some threshold power and zero gain for input power greater than

the same threshold. In contrast, the gain characteristic of the LALE

(leaky adaptive line enhancer) has no sharp discontinuity and is never

zero. Thus the LALE cannot reject signals, it can only attenuate them.

However, the LALE has a gain of nearly one for low power inputs and a

gain of nearly zero for high power inputs. Thus the LALE is similar

to the ideal APS because it passes low power signals more strongly

than it passes high power signals. The purpose of this chapter is to

define specifications which quantify the difference between a practical

APS (such as the LALE) and the ideal APS.

One approach to defining a practical gain specification is to allow

a range of gains which are near to the ideal gain. For example, instead

of requiring that the gain be one if the input power is less than some

threshold, require that the gain be between 1-6 1 and I+sI if the input

power is less than the threshold. Figure 3-2 shows a gain tolerance

scheme which is based on this idea. A mathematical description of the

allowable gains is:

l l < l + 61 for p <p p

g < I + 6 for p1 < p < p2  (3-1)

g < 62  for p2 < p

5O
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Figure 3-2. Tolerance scheme one for the gain of an APS.
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We will refer to this tolerance scheme as tolerance schene one (TSI). (

If 61 = 0, 62 = 0 and p, = P2' then TSI describes the ideal APS gain

characteristic.

An alternative is to consider the APS entirely from the power

domain. Figure 3-3 shows a power-out vs. power-in curve for an ideal

APS. The power-out vs. power-in formulation suggests bounding of the

output power rather than the filter gain.

A practical power-out vs. power-in specification can be derived

by permitting tolerances about the ideal curve. Figure 3-4 shows a

practical power-out vs. power-in tolerance scheme. This tolerance

scheme will be called tolerance scheme two (TS2). TSI and TS2 differ

because TS2 controls the response to high power inputs more tightly

than TSl. If TSl is converted into a power-out vs. power-in specifica-

tion (see Figure 3-5), it is clear that TSl permits high pow.,er inputs

to have high output power. TS2, on the other hand, guarantees that

signals with input power greater than P2 will have less output power

than signals with an input power between P3 and pl.

A mathematical description of TS2 is:

I p1 : < g < + pl for p < P1

g < I + p, for Pl<p<P2  (3-2)

" 2 P2LP

g < p for P2 <P

If P= 0, P2 = 0 and p1 = P2' then TS2 describes the ideal APS

characteristic. Also, if 61 = pl and 62 =P then TS2 is equivalent

(

I



output
power

Pt input power
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54



{(

1

output
power

2 A

~ 2

input power

Figure 3-5. Tolerance scheme one as
power-out vs. power-in.

II
55



to TSI for input power less than P2 (but TS2 is more stringent than TSI

for input powers greater than p2 ).

The two tolerance schemes presented in this chapter can be used to

describe a practical APS. By using these schenes to characterize

different power separators we will be able to identify the strengths and

weaknesses of the different power separators with the' goal of developing

improved practical power separators.
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4 -- APS2: A OFT BASED ADAPTIVE POIER SEPARATOR

A straightforward approach to adaptive power separation is to

evaluate the power spectrum of the input signal and then to use the

spectrum to design a filter which has zero gain at frequencies where the

power spectral density exceeds a chosen threshold and unit gain else-

where. When the input signal is applied to the resulting filter

(see Figure 4-1), the output will contain only the weak input components

which do not spectrally overlap the strong input conponents. This is a

general structure for an APS.

The power spectrum of a signal can be evaluated by the digital

Fourier transform (OFT). This technique, which is called the Welch-

periodogram method [Opp], creates a power spectral estimate by averagirg (

the squared magnitude of the OFT of the input data. An associated

filtering technique multiplies the outputs of the OFT (which correspond

to spectral components) by zero or one and then takes an inverse DFT to

obtain the output time series. Figure 4-2 shows the block diagram of an

adaptive power separator which is based on these ideas. This APS is

called the APS2.

The input signal is applied to the APS2 as a series of data samples,

and the APS2 computes the OFT of the last n data samples:

n-I

[G(k)]m  = I x(k-i) Exp(2Tt) m 0, 1, ... , n-i (4-)
i0O
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where

G(k) = vector of OFT values at time k

m = spectral bin number

nfT

T = sampling period

f = frequency

Each DFT value [G(k)]m is the output of a finite impulse response (FIR)

filter with transfer function:

n-l

H(Z,m) = E Exp(j27r )Z - i

i=On

=l m 0O, l, .... n- . (4-2)

1 - Exp(j2--.)Z -
n

Thus the OFT of the input sequence can be computed by a bank of n FIR

filters with transfer functions given by Eq. 4-2 [Pap].' Figure 4-3

shows an implementation of the OFT which is based on Eq. 4-2. While

a more efficient way to compute the OFT is by one of the fast algorithms

such as the fast fourier transform, great insight can be obtained by

viewing the OFT as a bank of bandpass filters. Thus we will analyze the

APS2 as if it were made from a bank of bandpass filters.

The APS2 filtering technique multiplies the outputs of the OFT by

zero or one and then inverse OFT's the resulting filtered signal to

obtain a time series. If the OFT is modeled as a bank of bandpass

filters, as shown in Figure 4-3, then the APS2 filtering technique can

be modeled as multiplying the outputs of the bandpass filters by zero or

f 6
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one and then su;;;nin 9 the weighted Outputs. This is shotwn in Figure 4-4C
where the threshold devices have an output of 1 if the input power at a

given spectral bin is less than the threshold power and 0 if the input

power is greater than the threshold power. We will use this model to

analyze the two phases of the APS2's operation: spectral estimation and

filter design.

Recall that the APS2 uses the average squared magnitude of the OFT

as an estimate of the power spectrum. Also, the mth OFT output is the

output of a filter with transfer function given by Eq. 4-2. This filter

has n zeros, equally spaced on the unit circle at frequencies which are

integer multiples of -L and a pole at Exp(j2r-) which cancels the zero
mn

at frequency -T-. The transfer function of such a filter is shown in

Figure 4-5 (m = 4, n 16 for this filter).' If the input consists of

sinusoids at integer bin numbers* (i.e. their frequencies are integer

1 th
multiples of nT), then the output power of the mth filter will be propor-

tional to the power of the sinusoid at frequency !T because the zeros
nT

of the comb filter will cancel all of the sinusoids except the sinusoid
at frequency -- ~ where there is a pole zero cancellation. Thus, provided

that the input consists of on-bin sinusoids, the power in the OFT out-

put is the true power spectrum. However, if the input has off-bin

sinusoids, then the APS2 will not estimate the true power spectrum.

Consider the case of a sinusoid at frequency fu (see Figure 4-5). This

sinusoid is in a sidelobe of every OFT filter and so will pass through

In digital filtering, signal frequencies are often expressed in
terms of spectral bin numbers where:

bin number = f x T x number of points in the OFT
For convenience, signals with integer bin numbers are called on-bin
signals and those with non-integer bin numbers are called off-bin
signals.
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In sunmmary, the APS2 functions ideally for any number of sinusoidal

inputs provided that their frequencies all correspond to integer bin

numbers. Sinusoidal inputs which are not on-bin can cause undesirable

effects. First, the DFT based power spectrum estimator will exhibit

leakage. This causes the power spectral estimate to show more power

than is really present at scme frequencies, so the APS2 may block weak

signals because the power spectral estimate falsely indicates that they

are strong. Similarly, the power spectral estimate may show less pow.er

at some frequencies than is actually present. Second, the filter design

used by the APS2 to reject powerful signals unfortunately creates

relatively large gains in portions of the rejection region. Consequently

the APS2 will only partially reject powerful off-bin signals.

Simulation of the APS2

An APS2 based on a 32 point DFT was simulated. The first test

input to the APS2 was the sum of two sinusoids. Sinusoid one was at 25

of the Nyquist frequency (bin number = 4) and sinusoid two Ms at 56.25.

of the Nyquist frequency (bin number = 9). During the simulation the

power of the first sinusoid was varied from 0.1 to 100 and the power of

the second sinusoid was held constant at 0.1. The threshold power was 1.

Figures 4-7A and B show the gain characteristic of the APS2 at the

frequency of each sinusoid. Since both of the signals were on-bin the

OFT did not suffer from leakage and the APS2 functioned perfectly.

Figure 4-7A shows that the gain at the frequency of sinusoid one was

unity when the power was less than the threshold and zero when the power

exceeded the threshold. Figure 4-7B shows that the gain at the frequency

of thd sinusoid two remained unity for all powers of sinusoid one. (
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Figures 4-8 shows the transfer function of the APS2 for several (

powers of signal one. From this figure we see that the APS2 cancels

the powerful signal by creating a notch at its frequency.

Figures 4-9A and S show the gain of the APS2 for the another test

input. Again the test input was the sum of two sinusoids. Sinusoid one

was at 28.125% of the Nlyquist frequency (bin number - 4.5) and sinusoid

two was at 56.25% of the iNyquist frequency (bin number - 9). During the

simulation the power of sinusoid one was varied from 0.1 to 100 and the

power of sinusoid two was held constant at 0.1. The threshold power was

1. The major weaknesses of the APS2 are apparent from this figure:

(A) Because the gain of a DFT bandpass filter is not unity for off-bin

signals, the gain at the frequency of sinusoid one remained unity when

the power of the sinusoid was between 1 and 2, even though the threshold

power was 1. (B) Because of poor filter design, when the gain at

sinusoid one's frequency did change, it first increased and then slowly

dropped towards zero, rather than immediately becoming zero. (The only

reason that the gain drops as the signal power increases is that leakage

causes more and more of the poles to be removed.) (C) The gain at the

frequency of the second sinusoid dropped to zero even though the power

at that frequency was al'w.ays less than the threshold power. This is

the result of leakage from sinusoid one.

The effects of leakage can also be seen in Figure 4-10 which shows

the.transfer function of the APS2 for several powers of signal one.

Figure 4-10 show that the APS2 is an allpass filter when the power of

signal one is 0.1. When the power of signal one is 2.5, the APS2

develops a notch near the frequency of signal one. However, sidelobe
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effects cause the gain at the frequency of signal one to be greater than (

one. When the power of signal one is 100 the APS2 notches a wide range

of frequencies, including the frequency of signal two. This wide notch

is caused by leakage from signal one.
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5 -- APS3: Att LALE-DFT BASED ADAPTIVE POWER SEPARATOR

Introduction

This chapter proposes and examines an APS which uses the LALE and

a OFT for spectral analysis, and a OFT based filter design technique .

called frequency sampling [Rab] to design bandstop filters. This

adaptive power separator will be called the APS3 to distinguish it from

the purely OFT based APS2 that was analyzed in Chapter 4. The reason

for using a LALE and a OFT for spectral estimation is that the LALE

reduces leakage effects and is not sensitive to the frequency of the

signals (i.e. the signals do not have to be 'on-bin'). The advantage

of the frequency sampling filter design technique is that it is simple,

fast, and by increasing the filter length can create arbitrarily good

filters. Thus the APS3 improves on the two weaknesses of the APS2:

poor power spectral estimation and poor filter design.

The APS3 is based on the same simple idea as the APS2. Estimate

the power spectrum of the input and then design a filter that passes

the frequencies which have low power signals and rejects the frequencies

which have high power signals. Figure 5-1 shows a block diagram of the

APS3. The theory of operation is: 1) the LALE forms a filter with a

gain that is related to the signal-to-noise ratio (SNR). The larger

' the signal power the larger the SNR and consequently the larger the

filter gain. 2) The OFT of the weight vector of the LALE measures the

gain of the LALE, which is a modified power spectral estimate. 3) The

(
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Figure 5-1. Block Diagram of the APS3.

75

LO)



I

nodified power spectral estimate is used to create a desired filter

characteristic, which is then realized as a practical filter. 4) The

resulting filter is used to filter the input, and by design the output

of this filter will contain only the weak signals.

The next few sections are devoted to analyzing the modified power

spectral estimate that is derived from the LALE. We show that this

modified power spectral estimate has less leakage than a DFT based poqer

spectral estimate. Thus the LALE power spectral estimate can detect

small signals that are near powerful off-bin signals better than a

DFT power spectral estimate. (Note: the use of windows with the DFT

will reduce the effects of leakage, but very powerful off-bin signals

will still swamp small signals.) Thus the LALE power spectral estimate

can be used to obtain arbitrarily good switching characteristics, so

the APS3 can have a lower po;..er threshold p1 that is arbitrarily close

to the upper power threshold p2 (see the descriptions of tolerance

scheme one and two which are given by Eq. 3-1 and 3-2).

The last sections of this chapter analyze the filter design

technique used in the APS3. We prove that the filter design technique

used in the APS3 can design arbitrarily good (in an integral squared

error sense) filters. Thus we show that the APS3 fits gain tolerance

scheme one (Eq. 3-1).

LALE-DFT Based Power Sptral Estimate

In this section we will use the analysis of the mean LALE weight

vector, which was presented in Chapter 2, to show that the DFT of the

LALE weight vector is a modified power spectral estimate. The perform-

a nce of the LALE-DFT power spectral estimate will be analyzed and
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compared to the conventional Velch periodogram power spectral estimate.

Again, the analysis in this section follows Treichler's [Tre] analysis

with only small modifications to account for the use of a LALE as

opposed to an ALE.

The discrete power spectrum of a signal x(k) may be found by taking

the DFT of n samples of the autocorrelation function of x(k). If the

autocorrelation of x(k) is r(t), then samples of the autocorrelation

function can be grouped to form the vector:

Tr = [r(A), r(A+I) ... r(A+n-1)]T

The discrete power spectrum, S, corresponding to this autocorrelation

vector is:

S = F.r (5-1)

where F is an m by n matrix formed from the basis vectors of the DFT.

The elements of the F matrix are:

[ Exptj27r ( jt + 0)} (5-2)

where the starting phase, 0, is arbitrarily set to correspond to the

decorrelation delay A.

The ALE spectral estimate, which is derived from the DFT of the

expected LALE weight vector, can be written as:

=LL F.E{W}SLALE FEW

n-i [~E 1 -] Q- - (5-3)

i=O o + y +

(
77

. . . . . .. .. ..I. . . . .. . . . . .. . .. _ ", .;. . . . . ..



If the input can be rmodeled as K sinusoids with powers

Pi PK and frequencies uI . .' , and if all of the sinusoids are

separated by at least I1 Hz and all of the frequencies are between 20
nT

and 80% of the Nyquist frequency, then the autocorrelation matrix has

eigenvectors of a simple form (Eq. 2-13). Under these conditions

Eq. 5-3 becomes:

K

S F E r. (5-4)
i=l 0 +2 +2PI

where r. is the autocorrelation vector associated with the ith sinusoid.

1

Substituting the definition of the discrete power spectrum (Eq. 5-S)

into Eq. 5-4 yields:

K

SLALE i=I + Y + Pi

where Si is the power spectrum associated with the ith sinusoid.

Thus Eq. 5-5 shows that the LALE-DFT power spectral estimate

contains the true power spectrum, but with a considerable (but desirable)

distortion of the estimated power. If we define a shape vector for the

power spectrum of a sinusoid as:

uI

2
n
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where r is the autocorrelation vector of a sinusoid IC

p is the power of the sinusoid

Then for a sinusoid at frequency w,

+- i n
I(IJ2 1 + T1+ii) (5-7)

nSin(c 2 - wT)} nSin[ -2. + ,T)}

The LALE-DFT power spectral estimate is, in terms of the shape vector,

K ni
K - ESNR
L ii (5-8)
i1 1 + ZESNR i

where

ESNR i  : effective SNR of the i th sinusoid (

Pi

0 +y

For comparison, the Welch spectral estimate is:

K

S ~i iu (5-9)
i =1

Thus the LALE-DFT produces an amplitude distorted power spectral

estimate when compared to the Welch spectral estimate. However, the

% amplitude distortion can be compedsated for in the APS3 by adjusting

threshold power Pt" Since the amplitude of the LALE-DFT power
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spectral estim~ate is a monotonic function of the signal po;er, an

amplitude threshold a t can be found for any given power threshold Pt"

n

at = Z Z (5-10)

such that if the amplitude of the LALE-DFT power spectral estimate is

greater than at then the povwer of the input signal must be greater than

P - Thus the LALE-DFT power spectral estimate can be used by the APS3

to distinguish between weak signals and strong signals.

Compared to the Welch spectrum, the LALE-DFT spectrum provides

better detectability of relatively weak signals that are close in

frequency to powerful signals. This advantageous behavior is a result

of the biased amplitude in the LALE-DFT spectrum. Recall that the

LALE-DFT spectrum is composed of a sum of scaled shape functions

(Eq. 5-8). These shape functions, U, have a maximum amplitude of I and

sidelobes whose amplitudes are inversely proportional to the difference

between the frequency of the sidelobe and the mainlobe. The maximum

scale factor is unity, so the largest possible peak in the LALE-OFT

spectrum has an amplitude of unity. Therefore, since the largest side-

lobe of the shape function is typically less than 0.25 for a reasonably

sized DFT, the largest sidelobe in the LALE-DFT spectrum is smaller

than 0.25. If y is appropriately chosen so that at, the amplitude

threshold, is greater than 0.25, then no sidelobe can exceed a t thus no

sidelobe can be falsely treated as a powerful signal. (However, side-

lobes can add and thereby cause a weak signal to appear strong or a

strong signal to appear weak. This effect is relatively minor and only

of concern when there are closely spaced input signals, consequently
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the superpositiun of sidelobes can usually be ignored if all of the

input signals are separated by at least 1.5/nT Hz.) In contrast the

Welch spectrum is also composed of scaled shape functions, but the

scaling factor is proportional to the signal power. Thus a powerful

signal will have large sidelobes which would be falsely treated as

powerful signals.

Figure 5-2 illustrates the difference between the LALE-DFT spectrum

and the Welch spectrum. The input consisted of the sum of two sinusoids.

One sinusoid was at 25% of the Nyquist frequency with a power of I, and

the other was at 32.8125% of the Nyquist frequency with a power of 10.

These spectral .estimates were computed with a 256 point OFT of a 32

weight LALE (224 zeros are appended to the 32 values of the LALE weights

to generate a 256 point vector for the OFT) and a 256 point OFT of a

64 point autocorrelation function, since a 64 point autocorrelation

function is as easy to compute as a 32 weight LALE. (Note: the OFT of

a 64 point autocorrelation function has better frequency resolution than

the DFT of a 32 point autocorrelation function, thus this com.parison is

not biased in favor of the LALE.) The LALE power spectrum clearly shows

the peak due to the smaller signal, whereas the smaller signal is

swamped in the Welch spectrum. Thus for any fixed computational com-

plexity, the LALE-DFT power spectral estimate has less leakage than the

Welch spectrum.

We have established that the LALE-DFT power spectrum can be used

to determine the frequencies at which the signal power exceeds a pre-

determined threshold. However, if a simple threshold device is used to

distinguish between low power and high power signals, noise in the

spectral estimate could cause serious problems. For example, if the (
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expected spectrum is near the threshold value then noise could cause

the threshold device to switch repeatedly as the actual spectral

estimate varied about the expected value. Switching by the threshold

devices would cause the APS3 to redesign its bandstop filter, and this

would, in turn, modulate the output which is often undesirable. Thus

we need to analyze the noise in the power spectral estimate.

Variance of the LALE weight vector

The variance of the LALE-DFT power spectral estimate depends on the

variance of the LALE weight vector, so in this section we analyze the

variance of the LALE weight vector. As in Chapter 2, this analysis

follows Treichler's [Tre] analysis with only those modifications required

to account for the change in adaptive algorithm.

Define the weight vector noise to be:

AW(k) = W(k) - E{W(k)} (5-11)

then the weight vector covariance is:

E{AW(k)AWT(k)} = 11(k) . (5-12)

The evolution of AW(k) is complicated, so we study instead the evolution

of V(k) where:

V(k+l) = [vI-2pR(k)]V(k) + 2v[d(k)X(k)-P s]  . (5-13)

The evolution of V(k) closely models the average behavior of AW(k),

especially if is small and the LALE is near convergence. Since V(k)

closely approximates AW(k), the converged covariance of V will approxi-

mates. W(k), the converged covariance of V will approximate the converg-

ed covariance of AW.

The covariance of V can be written as:
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Cov{V(k+1)) = E{V(k+l)V T(k+l)1

= [vI-2pR(k)]CoV{V(k)} [,t-2pRk)]

k

+ 4112 [E{B(k,O)} + k([,I-2vR(k-i)]
i

i=1

+ E{BT(k,i)}[vI-2R(ki)]i)] (5-14)

where the matrix B(k,i) is defined as:

B(k,i) = [d(k)X(k)-P s] [d(k-i)X(k-i)-P s
T  . (5-15)

Equation 5-15 is a function of the specific input signals and very
2

conplicated. However, if the input consists of white noise of power a

and a sinusoid of power p and angular frequency w then Treichler [Tre]

showed that:
.2

[E{B(ki)}] R Co)]wT(f-n,-2i)]

t 2

+ pCos[wT(t-m)l a2 6(Z-m+i)

+ pCos[wT(Z-m+i)] 26(i )

+ a46(i)6(Z-M+i) .

By transforming Eq. 5-14 with the modal matrix Q, and defining

V(k) = QV'(k), T = QI'T, and assuming that V and y are small enough

so that [l-2,R] n+ Z I, then:

E{V'(k+l)vT(k+l)) [vI-2p(o 2+A)]EV'(k)V (k)}

+ [vl- 21j(a +;A)]

+ 412(22 A-j41) (5-16)
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(I Both the transition matrix and the driving terrm of Eq. 5-16 are (

diagonal, so the converged value of 11' is diagonal. Thus Eq. 5-16 can

be solved for the converged value of nI':

2 (2X 1 1  = 2 22-

(Y+a +Xi) -(Ya +X)
2 Xi

z a( +- ) "(5-17)

y+a +Yi

Equation 5-17 can be solved for 11(-) by reversing the coordinate

transformation:

n-I X.11(-) ha a(l ] a Q.Q*) . (5-18)
2 ~ y~ 11Wi:O y + a+ Xi

(
Equation 5-18 is valid if the input consists of multiple sinusoids in

2n
white noise. As a check, if the input has low SNR, i.e. a >> n-i,

then 11(-) Z vo2I which is the result derived in [Wid] for stochastic

inputs.

Variance of the LALE-DFT power spectral estimate

Denote the actual LALE-OFT spectral estimate as SLALE and the

mean spectral estimate as SLALE = F-E{W}. Using these definitions the
LAL

covariance of SLALE is:

CoV{SLALE }  LALE-LALESLALE-S LALE )

F E{(W-E{W1)(W-E{W))TFT (5-19)

(
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From Eq. 5-18,

11 = E{(W-E{W})(W-E{W,})T}

Z '002 (I+Re )  
(5-20).

where:

n-iRe - i---QiQT
i=O Y + a + i

coherent input equivalent
autocorrelation matrix

Substituting Eq. 5-20 into 5-19 yields:

COV(SLALE} = 12(nI+FRe FT) (5-21)

The variance of the spectral estimate is the main diagonal of

CoV{SLALE}. Solving for the variance yields:

n-l n-i

[Var{SLALE )Im = I [It]i Exp(2T.-jm -

i=O t=0 -n-I
= o2 [1 -__-L r (t)Exp(2Trim t

+t:-n-l) n re(

(5-22)

where

r (t) = the coherent component equivalent
e autocorrelation function

K8
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Equation 5-22 shows that the variance of the spectral estimnate is

a constant plus a curve which is determined by the DFT of a Bartlett-

windowed version of the equivalent coherent autocorrelation function

r e(t). An important property of the variance is that it is proportional

to p. Thus by decreasing ji, the variance of the spectral estimate can

be reduced to any desired value.

A simple example serves to illustrate the properties of the

variance. Suppose that the input is a sinusoid of frequency -

(an on-bin signal) and power p, then:

[Var{SLALE 1]m
n-i mT1

n2[ + pn -1_n Cos(21TrA) Exp(2njrm-1)L + 9 tC-(-1) n

np 2  rnmm 0 or n-m0  (5-23A)

n

npo ( + Z ESNR m=m 0 or n-m0  (5-23B)
I + a ESNR

For the design of the APS3, Eqs. 5-23A and 5-238 can be reduced to one

simple design rule:

2 2
nljcs < Var{SLALE} < 2noj 2  (5-24)

In summary, we have found that if the input could be modeled as a

sum of sinusoids in white noise then the LALE-DFT spectrum has the same

shape as the ideal power spectrum, but that the power estimate is

8
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biased (Eq. 5-15)t Furthermore, we have shown that the variance of the

spectral estimate can be bounded by a simple expression (Eq. 5-24). In

the next section we will use these results to show that the LALE-OFT

power spectrum, in conjunction with a hysteresis threshold device, fits

the power switching requirements of both gain tolerance schemes that

were presented in Chapter 2.

How the LALE-DFT fits the gain tolerance schemes

In this section we will show how the LALE-DFT power spectral

estimate can be used in the APS3, and how the APS3 will meet the switch-

ing requirements of both gain tolerance schemes. This is an importnat

step towards a useful adaptive power separator.

Both gain tolerance schemes have two power thresholds, p1 and P 2 -

A switching device that obeys the tolerance schemes should indicate

"pass" if the input signal power is less than pl, "stop" if the signal

power is greater than P2 and either "pass" or "stop" otherwise. From

Eq. 5-10 we find that the amplitude of the LALE-DFT spectrum is a

monotonic function of the input signal power. Thus a unique spectrum

amplitude is associated with each input power. Assume that an amplitude

threshold a t is found (using Eq. 5-18) which corresponds to an input

power of Then if the amplitude of the LALE-OFT spectrum is

(P1 +p2)

greater than a t the input power must be greater than 2 Thus if

n threshold devices with equations:

"stop" if input > at .

output (5-25)

"pass" if input < at
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are used on the output of the LALE-DFT they will indicate which (

frequencies should be passed and which should be stopped.

Noise in the spectral estimate will adversely affect the threshold

devices. For example, because of noise the amplitude of the spectral

estimate may be less than at even though the signal power is greater

(p1+P2)
than 2 This will cause the threshold device to output a "pass"

when it should indicate "stop." Thus with a noisy spectral estimate

there is a possibility of a false output from the threshold devices.

Since the statistics of the spectral noise are known, these effects can

be quantified.

In accordance with the gain tolerance schemes, -we say there is an

• error (false output) when the threshold devices indicate "pass" even

though the input power is greater than P2 or when the threshol4 devices

indicate "stop" even though the input power is less than pl. The proba-

bility of an error is:

(
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P (error) P(S;LALE > atand p < p.) or 6 LALE < atand p ?I p 2 ))

n(p, +p2 ) np 2
(StLALE < -2 and S LALE >-2

n (p, +p2 ) + 4(y+o )nP 2 + 2(-y+a

2n(-y4- 2 ) (P2-P1)

= ~~LAL - 'LA E [n(p, +P2) + 4(y+a )][np,+2(y+a) A r

-.. 2n(-y4-c X (p-PI
S LALE -

5LALE < 2np+2  + (ia)[p+2 (y+c; 2 )

2n(yi-2 )(P2-p1 )
< P{1S ~~ - ?LL'h----'-- (5-26)

[n(p, +p2) + 4 (-y +, )]EnP 2 +2(y+:U]-J

Equation 5-26 is Chebyshev's inequality [Dud] so,

P~ro}<Var{S LALEI (5-27)

62

where

6 2n(y +c )(P2-p1 )

Cn(p,+ 2  + 4(y+a 2)][np24-2(y4-c )]

From Eq. 5-24 Var{SLA<E 2niia2 so:

62
P{error} < 2np 6 (5-28)

62
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Thus, provided that p1 I P2' the probability of an error is finite

and can be made as small as desired by making p small. Therefore the

LALE-DFT spectral estimator fits both tolerance schemes in a probability

of an error have to be balanced against convergence time.

Earlier we discussed the possibility that a signal with power near

the threshold power could cause the output of the threshold devices to

repeatedly change state. This could be undesirable since it would

cause the APS3 to repeatedly redesign its bandstop filter which would,

in turn, modulate the signals that pass through the filter. A measure

of this behavior is the expected design cycle time, where the design

cycle time is the time it takes for the output of a threshold device to

change state and then return to the original state. If the design cycle

time is large then the filter is infrequently redesigned and will not

continually modulate the signals. Thus we will analyze the APS3 (

threshold devices to find the design cycle time T
C

The output of a threshold device can be viewed as a Markov process.

The output has two states, "pass" and "stop," and for each input power

there are probabilities associated with each state. We define Pp as

the probability that the output is a "pass" and Ps as the probability

that the output is a "stop." The state diagram for the threshold

device is shown in Figure 5-3. The expected design cycle time can be

computed [Cin]:

EfTc } = Eftime from pass to stop} + E{time from stop to passl

S(5-29)
Pp Ps
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P
p.

Figure 5-3. State diagram of a simple threshold device.

PpP PIs

Figure 5-4. State diagram of a hysteresis threshold device.
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If the signal power is exactly the threshold power, p P = 0.5, and
p = S =05 n

so E(T c } = 4 iterations. If this time is too short, a more complicated

threshold device will have to be used because there is no way to control

P and P with a simple threshold device.
p s

A threshold device with hysteresis will allow the designer to

control Pp and Ps. By making Ps or Pp small, E{Tc } can be made as

large as desired. To see how a hysteresis device provides control ove'r
Ps and Pp we define:i

PadPwdn(k) e output of the threshold device at time k.

i = SLALE = input to the threshold device

a. = lower threshold

ah = higher threshold
Sh (

Using these definitions the law for the hysteresis threshold device is:

•pass" i < a

topass" a. < i < ah and *(k) "pass"

.(k+l) = (5-30)

"stop" ah < i

"stop" at < i < ah and *(k) "stop"

• :The probabilities of changing state are conditioned on the current

state, *(k):

I9
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Ps = P(O(k+l) = "stop" k(k) = "pass") = P~i~ah) (

Pp = P{¢(k+l) = "pass"I (k)= "pass"} = P(i<ah)

P = P{o(k+l) = "stop"lo(k) = "stop") = P(i>a1 }

Pps = P(i(k+l)= "pass"I¢(k) = "stop") P{i<a 1  (5-31)

The state diagram for the hysteresis device is shown in Figure 5-4.

For this device the expected cycle time is:

E{Tc I + (5-32)

THEOREM 5-1: If ah f aI then E{Tc } can be made as large as desired.

PROOF: If either P or PpIs can be made as small as desired then

E(T ) can be made as large as desired, so we will -how that either

PSI P or PPI can be made as small as desired.

Let 6 = Max(E{i)-a ,ah-E{i}). Assume for convenience that

6 = E{i)-at, then:

Psip = P{i<a }

P{Efi->6)

<_ P{i-Efifl>_6)

Var{SLALE}
<- 62

Equation 5-24 shows that Var{SLALE} can be made as small as

desired by making the value of ;j small. Therefore PSi p can be
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( •made as small as desired, and consequently E{TC } can be as large (
as desired since:

E{TI

An analagous demonstrations can be used to show that P can be

made as small as desired by defining 6 = ah - E(i}.

* .This completes the proof of theorem 5-1.

The expected design cycle time can be bounded using the same type

of arguments that were presented in the proof of theorem 5-1. A lower

bound on E(Tc I is:

a h-aE{Tc} > h a
- 2VAR(S LALE}

4- ( h -a
ah - at (5-33)

- n2

When a hysteresis device is used in the APS3, the probability of

an incorrect state or error is:

P{error} < P((i>ah and p<P, ) or (i<a, and p>p2)

I.< Pfli-E{iQj>.Min(a h-a min ' amax-at)

< Var(SLALE} (5-34)

Min(a h-amin a maxa "

9 (
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f where

n

amin =n o2

a2P2 Y

j max2
.n2 + Y + 0

Since VAR{SLALE) can be made as small as desired, the probability

of an error can be made as small as desired. Therefore, by.using A

threshold devices with hysteresis the switching characteristics of the

APS3 will meet both gain tolerahce schemes and still have as long a

design cycle time as desired.

Frequency sampling filter design

In the previous sections we have analyzed the power spectral

I estimation technique used by the APS3. We have shown that the OFT of

the LALE weight vector in conjunction with hysteresis threshold devices

can indicate with any desired accuracy which frequencies should be

blocked and which should be passed. In the following section we will

show that the frequency sampling filter design technique can use the

Ioutput of the threshold devices to design a filter that will block, to

any desired accuracy, the high power signals and pass, with nearly unit

gain, the low power signals.

One technique for designing finite impulse response (FIR) filters

is the frequency sampling technique [Opp, Rab, Rab2]. Frequency sampl-

ing uses an inverse OFT to obtain a weight vector from samples of the

ideal frequency response. This technique is fast, computationally
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efficient and not Iterative. Since the APS3 will be a real-time signal

jprocessor speed is important. Also, frequency sampling can be used to

design filters with linear phase which may be desirable in communication

systems. Therefore the frequency sampling technique is used in the APS3

to design the bandstop filter that rejects the strong input signals.

In the APS3 the ideal frequency response is derived from the DFT

of the LALE weight vector n threshold devices process the outputs of an

n point DFT to produce samples of the ideal frequency response. The

frequency sampling technique uses the following equation (inverse DFT)

to obtain a weight vector from the sampled frequency response:

n- 1

[W] (H],Exp(2rj ) i = 0, , ... , n-l (5-35)n &0=n

i" (
where

W = the weight vector of the FIR filter

= the pulse response of the FIR filter

H = the vector of gain specifications

= samples of the ideal frequency response

[Hie = ideal gain at frequency -

n = number of weights in FIR filter

= number of frequency samples

T = sampling period of FIR filter

Since we stipulate that W must be real, the following symmetry

condition has to be imposed on H:

[H)z = Conjugate([HI]n..-) (5-36)
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The transfer function of an FIR filter designed by Eq. 5-35 is [Opp]: (

(Z n-i [H3

H(Z) Z (5-37)n =0 I - Exp(j2An)Z-1
nn

The frequency response of the FIR filter is found by, substituting

Z Exp(jw) into Eq. 5-37:

n-1 Si n[(w-2-)

h(e) = Exp(-_j)n- - (-I)t[H]xpr(jr " 2n n Sn-- -) (5-38)
;50Sin Ej(w-2Jr) J

In
substituting w 7= tr into 'Eq. 5-38 shows that:

a n

IH(e = I0.HzI L = 0, 1, .. , n-I

Thus the gain of the FIR filter has the correct magnitude at the sample

I
2 frequencies (integer multiples of T). What about the phase? Eq. 5-37

shows that the frequency response consists of a linear phase term,1

Exp(-ju 21), and a complex term. One of the design requirements is

that the FIR filter have linear phase. This will be true if the complex

term is purely real which requires that:

( EH)z = (G)z e "  (5-39)

j *' where [G], is a real value, the magnitude of the ideal frequency

response. Also, since H has to obey Eq. 5-36:

I ,-~G] - [ . (5-40)
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ii.

(I . If H has the form specified in Eqs. 5-39 and 5-40, then the FIR filter

will have a real weight vector, linear phase and the same magnitude as

the ideal filter at the specification frequencies (integer multiples of

Hz). However, there will be zeros in any passband, as can be seen
nT

by rewriting Eq. 5-38 as:

. n-l n-l-JI 0 Si n [-(w-W)j](54
H(eJW) = e (l)£GJ2 (5-41)

U= nSin[!-(w-2 )J

This shows that the magnitude of H(Z) is the sum of n bandpass filters.

The peak amplitude of the filters is (G] at frequency I. In a pass

band, where [G] = [G]t = 1, the sign alternations in H(ej') caused

by the term i-l)t will cause the gain to be zero somewhere between
frequency - and . This follows from the intermediate value theorem .

(Ros]. Since this behavior is undesirable, an additional condition is

*imposed:

. G[G]l(-l >0 * (5-42)

* i With the added restriction of Eq. 5-42 the magnitude of H(Z) will

approximate quite closely the magnitude of the ideal frequency response.

Figure 5-5 shows the magnitude of H(Z) for a typical bandstop filter

ii designed by frequency sampling. The frequency response has ripples

which increase in magnitude near discontinuities in the derivative of

the ideal frequency response.

The magnitude of the ripples in the actual frequency response can

be reduced by smoothing the ideal frequency response. A common technique

9( 9
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r, for smoothing the ideal response is to vary a few of the ideal gains (

near a discontinuity. Usually the gains are varied until the ripple is

minimized (Opp, Rab, Rab2]. This procedure is complicated and nay be

Itoo slow for real-time filter design. Thus the APS3 uses fixed smooth-

ing of the ideal filter characteristic. Wherever there is a transition

from a desired gain of one to a desired gain of zero', the APS3 will

alter the gain of one to a gain of 0.4 (0.4 was chosen by examining a-I
table of optimal values [Rab2] and selecting a compromise value). .

Some reduction in the complexity of the APS3 can be obtained by

using the symmetry of Eqs. 5-39 and 5-40 and the fact that:

if

. W = inverse DFT(H) (5-43A)

then (

IW = inverse DFT(H') (5-433)

where

[w'] i = (wJ
2-+ mod n

[Hi = (-)CH]i

Figure 5-6 shows a block diagram for one possible implementation of the

filter design portion of the APS3. Notice how symmetry eliminates the

need for half of the threshold devices and half of the smoothers. Also,

the symmetry conditions required for linear phase dictate that the n/2

inputmust be zero since [G] -[G] from Eq. 5-40. Finally, the

n n(
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output of the inverse DFT is 'rotated', which by Eqs. 5-43A and B has

the same effect as Eq. 5-42.

This completes the derivation of the frequency sampling technique

for filter design. In the next section we will show that the frequency

response of filters designed by the APS3 can be made as nearly ideal

as desired.

Quality of frequency samplingdesigned filters

The quality of a filter can be defined in many ways. One measure

of the quality of a filter is defined as the integral of the square of

the difference between the ideal transfer function and the actual

transfer function. The following theorem uses the integral squared

error [Trt, Oga] criterium to characterize a frequency sampling filter.

THEOREM 5-2: The integral squared error between the transfer function

of a filter designed by frequency sampling and the ideal transfer

function can be reduced to any desired value by making the filter

length large enough.

A useful corollary to Theorem 5-2 is:

COROLLARY 5-2: Given a signal with a finite power spectral density

and a frequency sampling designed FIR filter, the output power due to

the difference between the actual transfer function and the ideal

transfer function can be made as small as desirel.

Before we prove Theorem 5-2 we will prove two lemmas.

(
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LE-IMA I: The impulse response of a frequency sampling designed FIR

filter is an aliased or folded version of the impulse response of the

ideal filter [Rab2].

PROOF: (The technique used in this proof is due to Papoulis [Pap].)

The transfer function H(w), of a digital filter is periodic with a

period of 1. This implies that H(Lo) can be expanded in a Fourier

series:

H()= CkExp(-j27kTwi)
i k=_o

where the ck are the Fourier coefficients and also the pulse response

of the ideal filter.

Frequency sampling uses samples of the ideal transfer function.

Let n be an arbitrary integer and define:

1
Il nT

then the samples of the ideal transfer function used by frequency

sampling are:

H(mw ) m = O, 1, ..., n-l

In terms of the Fourier coefficients these samples are:

H(mw ) = ckExp(-j2,kTmwl)

_ kExp(-j27k) m 0, 1, n....-1

1 04



Note that k can be written as:

k -rn for i = -n n
k i~n fr i- ~ ~ -. I and r .. ,-,0, t1,

so

Exp[-j2 tknl= Exp[-j2rT(i+rn)n]= Exp(-j27i-m1n nI n

since

Exp(j2tJ

Therefore,

n

H(mw1 ) = L Expj(i+rn)m

,-n r=-coir
2

Exp[-j2ni ml]  c
- X n r= i+rn

-n

- 1 c'.Exp[-j21ri2!3
i=-

2

where

C=i  O i +rn 2 2

This equation for H(mnu) is the DFT of the sequence c' Thus

the weight coefficients or pulse response derived by the frequency (
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sampling technique are the c' which are "aliased' Fourier series

coefficients. QED

LENMA 2: Given a sequence Ck of Fourier coefficients and an arbitrary

number, c, then a value of n can be found such that if m > n then

m-- 2
2 i

I c i+rnI < C

PROOF: By a form of Parseval's theorem [Trt)

!1

Ic k 2  1 f Hi(W) 2d w a

l .2T

where

Hi(w) is the ideal frequency response

a is some constant
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now 2

k f 1I J O Ck-rn j k-  F ' ICk+rn 12

I

j k I
22

< 2
a- IckI

]a
J-< Ikl< - Ick  I

Ssince : ICk (2 is a convergent series [Ros] there must exist, for any I

(k(<~.

J arbitrary c, some n such that

which implies that

n_.

k-y n rj>O +rn

QED (.

107



PROOF of THEOREM 5-2: the integral squared error is defined as:

2T

e2  TfJ Hi(ti)-Ha(w)1 2 dw

l 2T

where

Hi(w) is the ideal.transfer function

Ha(w) is the actual transfer function

also, if the ck are the Fourier series coefficients of Hi(w), then

p nI

H.(w) - Ha(U) = L CkEXp[-jukTJ - "_, r, ck+rExpCwkT

k=Ion r=c

by LEMMA 1.

Parseval's theorem [Trt) is:

2-

I -1
, 2T

where the ck are the Fourier series coefficients of Hi(W) so

1 08
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I
2~ 2.lkl -
e - + n I r1>0 C k+rnI

2 2

k>-1 -1g

2

n-

G n= te e ts 2 k=a n IrI>O
k=~c2 2 i

1 .

2 2 2

- f IH( i ' 2dw + I-  + c C<.nI
= - k ==- jr>O

-2 2

2T

Ti 'i~' td k 2 te

, by LEMMA 2 an n2 can be found such that if m > then

22

II

thus if n = MAX(nfn2 ) then for any > n t

2£

QED
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PROOF of COROLLARY to THEOREM 5-2: The error output power is:

.1 1I
Pe= 1 Se(w)d = f IE(w)12S(w)dwII

f( where

SS() = Power Spectral Density of input signal

S Mw = Power Spectral Density of signal which is duee

to the error between the ideal filter and the

actual filter .

Therefore,

1"" 2T

- Pe f VIE()ldw = Ve2

2T

where'

V = Max[S(w))

e 2  = integral squared error between the ideal and actual

2
transfer function. e can be made as small as

desired (Theorem 5-2)

this completes the proof.

NOTE: A signal with zero bandwidth, such as a sinusoid, does not

have a finite power spectral density. Consequently this proof does not

hold for sinusoids. However, it is conjectured that Gibbs phenomena
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(Car] may appear at discontinuities in the transfer function. So if (

the input has a sinusoid at the frequency of a discontinuity, then the

Gibbs phenomenon will cause the error power to be finite for all

values of n.

Theorem 5-2 supports the intuitive notion that increasing the

number of weights in an FIR filter should allow the transfer function

to become closer to the ideal transfer function. The corollary lets Us

know that in principle frequency sampling filters can attenuate any

finite bandwidth signal to any desired level. This means that the

filters designed by the APS3 fit gain tolerance scheme one. (In

practice this may not be true due to problems such as finite precision

arithmetic).

Figures 5-7 through 5-10 show a series of frequency sampling

designed bandstop filters. All of the filters have a stopband between (

12.5% and 25% of the Nyquist frequency. The transition gains, which

are at 12.5% and 25% of the Nyquist frequency, are 0.4. Figure 5-7

* shows the frequency response of a 32 weight.filter. Figures 5-8, 5-9

and 5-10 show the frequency response of a 64 weight filter, a 128 weight

filter and a 256 weight filter respectively. The improvement in the

frequency response is evident.

Summary and conclusions

This chapter has presented a scheme for an adaptive power separator

which is based on a LALE, a OFT and an inverse DFT. We have shown that

the adaptive power separator, called the APS3, fits tolerance scheme one.

This means that the designer can select two power thresholds, p, and p2

'with P < P2) and guarantee that all signals with power less than p, (

will be passed and all signals with power greater than p2 will be
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stopped. In the* context of the APS3, and gain tolerance scheme one,

the signals that are stopped will be multiplied by some gain g which

is between zero and some arbitrarily small value 62which is selected

by the designer.
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6 -- APS4: THE ADDITIONJ OF NOISE CANCELLINJG TO THE APS3

This chapter proposes and examines an adaptive power separator

(APS) which uses an adaptive noise canceller to improve the performance

of the APS3. The new APS has more components than the APS3, but the

performance fits tolerance scheme two. Because of the significant

improvement in performance, the new APS is called the APS4 to distin-

guish it from the APS3.

The previously explained APS, the APS3, designs a bandstop filter

that will reject the strong signals. However, the bandstop filter is

not perfect, so a small fraction of the strong si-gnal may still be in

the output of the APS3. Consequently, if the strong signal is powerful

enough the output power can be very large. We would like to find a (

scheme for cancelling the residues of strong signals.

Noise cancelling is a co~mon application for adaptive filters

[Wid, Glo]. The usual situation for noise cancelling is shown in

Figure 6-1. The adaptive filter forms a best fit between the noise

signal at the reference input and the noise in the primary input. Thus

the output consists of the signal and whatever noise the filter could

not match. In the case of the APS4, the primary input to the canceller

is the output of the APS3, and the reference input to the canceller is V
the output of a bandpass filter which passes only the strong signals.

Figure 6-2 shows the structure of the APS4. The LALE and the

bandstop filter form the APS3. The new bandpass FIR filter, which has

pass regions wherever the bandstop filter has rejection regions

(
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I

(see Fig. 6-3), passes only the strong signals. The strong signals are

used as the reference input to a leaky LMS canceller which cancels the

residues of the strong signals from the APS3 output. (An LLMS canceller

is used because greatly attenuated versions of the weak signals will

pass through the bandpass filter (due to ripple), and an LMS filter

would use these to cancel the weak signals in the APS3 output.) The

output of the noise canceller is the output of the APS4.

The bandpass filter used in the APS4 is the complement of the

bandstop filter which is used in the APS3. A simple way to design the

bandpass filter is to use the frequency sampling technique. The ideal

transfer function is derived from the ideal transfer fucntion of the

bandstop filter by replacing all gains of zero by gains of one and all

gains of one by gains of zero. The resulting bandpass filter (see

jFig. 6-3) will pass all of the signals which the bandstop filter

rejects -- these are the strong signals.

The analysis of the noise cancelling stage divides into two cases.

The first case is the analysis of weak signals and the second case is

the analysis of strong signals.

If a signal is weak then the bandstop filter will pass the signal

with a gain of nearly one, and the bandpass filter will pass the signal

with a gain of nearly zero. We will denote the gain of the bandstop

filter at the signal's frequency as 1-f1 and the gain of the bandpass

filter at the signal's frequency gl. Figure 6-4 shows the canceller in

this situation. The signal power at the "error" output is:

power : 2 + (l-fl-g 1g) 2ps (6-1)
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{Figure 6-3. Bandpass filter designed by the APS4 to derive a
reference input for cancelling strong signals.
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I where (

Ig is the gain of the LLMS filter at the weak

signal's frequency

oa is the noise power in the APS input (we ignore

any power reduction due to notches and ripples

in the bandstop filter, also we ignore the noise

I passing through the bandpass filter)

PS is the power of the weak signal

j The LLMS algorithm acts as if there were white noise with power Y2

added to the reference input. Thus the LLMS filter minimizes the

Ij effective "error" power which is given by:

effective error power 2 (lfgg) 2 2 (6-2)(

I where r

j n2  = the number of weights in the LLMS filter

y292 the noise power which the LLMS filter believes
n2

is passing through it

Y2 = a parameter of the LALE

= power of "algorithmic noise"

[The value of g which minimizes the effective "error" power is:

[ P

Y 2 1gESN (6-3)LP g2+ g ESNR + 2

123
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, where

ESNR = PS

= effective signal to noise ratio

The gain for the weak signal from the primary input to the "error"

output is:

2

- gig* 2 (6-4)
e g ESNR + n2

This.is the gain which will apply to a weak signal in the APS4.

If a signal is strong, then the bandstop filter will reject the

signal with a gain of nearly zero, and the bandpass filter will pass H
the signal with a gain of nearly one. We will denote the gain of the

bandstop filter as f2 and the gain of the bandpass filter as 1 - g2"

The analysis parallels the analysis in the weak signal case and we

find that the gain which applies to the strong signal is:

2

.= g (l-g2)
2ESNR n25

S-- The reason for adding the canceller to the APS3 was to limit the

' output power due to strong input signals. Theorem 6 shows that this

is possible.

1
i 124

I.
'-.... ... pi



n
THEOREM 6:- t 2' then the output power due to a signal

I with power p ._ Pt will be less than or equal to the output power due to

a signal with power p,, where Pt is the threshold power of the APS3, g2

is the passband ripple in the bandpass filter and n2 is the length of

the LLMS filter.

PROOF: The gain of the APS4 is:

i f2
g= (ig2)2 p +

Y 2 n'2

for signals whose power, p, is greater than or equal to the threshold

power Pt.

The output power due to strong signals is therefore:I (
f2F 2__2

Put = g2 p 2 2 2 P
1-lg2) 2 _R_ + Iiy2 n

j The slope of the output power with respect to the input power Is:

" 2[ 22F p (1-92)2
I. [2] [(l]22)2 2

aPout f2L [(- 2-.2f2n2J P ye

1-g2)2 --SY2 T2

Since p, n2 and Y2 are greater than zero, the slope of the power-out

I versus power-in curve will be negative if:

125I .
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(2l 2 - 2[T2 2  _
2f -2 ) _ 2 _ g

Y2  2

2 Y2

p -(l-g 2 )2

Thus the slope of the power-out versus power-in curve is negative if:

2 Y2

p n 2 (l1 g2 ) 2

This is the condition that makes the theorem true. For if the power-

out versus power-in curve has a negative slope then an increase in

input powerlwill cause a decrease in output power. Thus the theorem

requires that the slope of the power-out versus power-in curve be

negative for all powers p _ Pt. This implies that:

t 2 Y2

Pt~22 n2

Y2 < :S Pt 1-92) T

This demonstrates that the condition:

Y*S2 Pt(19 2 n T

is sufficient to guarantee that any signal with power p > pt will have

C less output power than a signal with power Pt"

126

LA.,-



QE D

(As the power of a weak signal increases the gain of the APS4

decreases. The gain variation for weak signals is minimized if y2

is maximized. Since the APS4 should have a minimum gain variation for

weak signals, the best choice of y, is:

-= Pt(lg 2 )
2  2 (6-6)

since this is the largest possible value for y that will still

guarantee, by Theorem 6, that the output power due to strong signals

will decrease as the input power increases. By using this value for

Y2 we find that the minimum gain for weak signals 
is:

(l-f) 2

= I - Pl (6-7)= (n 2

Y2Pt n2

which implies that

2 2
9 1 f1(l-g2) (6-8)
91 + (1-g2)

where

P1  is the gain deviation in the weak signal region

(see Eq. 3-2, the definition of tolerance scheme two)

I is the stopband ripple of the bandpass filter

92 is the passband ripple of the bandpass 
filter

fl is the passband ripple of the bandstop filter
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Since g, g2 and f, can be made as small as desired (Theorem 5-2),

P, can be made as small as desired, thus the APS4 meets the gain speci-

fications of tolerance scheme 2 (Eq. 3-2) in the weak signal region.

The maximum gain for strong signals is:

f2
2 (6-9)

where

2
P Pt is the maximum allowed output power due to

a strong signal (see the definition of

tolerance scheme two, Chapter 3)

f is the stopband ripple for the bandstop filter

( Since f2 can be made as small as desired (Theorem 5-2), p2 can be made

as small as desired, thus the APS4 meets the gain specifications of

tolerance scheme 2 in the strong signal region.

The switching characteristics of the APS4 are controlled by

the APS3 part of the APS4. Since the switching characteristic of the

APS3 with hysteresis devices fits tolerance scheme two, the switching

characteristics of the APS4 also fits tolerance scheme two. Since the

gain characteristics of the APS4 filters fit tolerance scheme two, the

APS4 fits tolerance scheme two. Thus, any desired quality of adaptive

power separator, as measured by tolerance scheme two, can be implement-

Sed wfth the APS4.
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*" Summary and Conclusions

This chapter has presented the APS4, which consists of the APS3

with an adaptive noise cancelling stage. The APS4 uses more computa-

tions than the APS3, but the gain characteristic of the APS4 fits

tolerance scheme two. Because the APS4 controls output power, rather

than gain, it is suited to applications where the power of the strong

signals can be many times larger than the threshold power. For this

reason, the APS4 is the best of the adaptive power separators

discussed in this work.

129
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- 7 -- SYNTHESIS OF AN APS

In this chapter we show how to design an APS given a problem

specification. The problem to be solved is: design a system that will

reject jamming signals and pass communication signals given a received

signal that consists of narrowband communications signals with powers

between 0.1 and 2.0, narrowband jammers with power greater than 3.0,

and white noise with power 0.5. Conventional filters cannot be used

because the frequencies of the various signals are unknown, and the

LALE cannot be used because it cannot suppress the jammers without also

suppressing the communication signals.

Because the problem definition is incomplete, we have to make

several assumptions. First, we assume that the jammer powers are less

than 20 and design the APS3 accordingly. Second, we assume that the

jammer powers at the output of the APS should be less than 0.01. Third,

we assume that there will be at most 20 signals at any time and that

the frequencies of the signals are between 2 MHz and 8 MHz. Finally,

we assume that the jammer powers can be as large as 20 000 and show how

to design an APS4 to accommodate this case.

The design of the adaptive power separator consists of a number

of steps:

1) Selection of n, the number of LALE weights.

Since an n weight LALE can handle up to n/2 sinusoids, n must be

greater than 40. Also, the FFT, which is an efficient implementa-

tion of the OFT, requires that n be an integral power of 2, so n

is chosen to be 64.
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2) Selection of T, the sampling period.

The LALE will give good spectral estimates only if the frequencies

of all the signals are between 20% and 80% of the Nyquist

frequency. Thus T has to be 5OnS ( MHz). The sampling rate, in

conjunction with the number of LALE weights, determines the bin

width of the LALE (313 kHz). Any signal with bandwidth less than

a tenth the bin width can be reasonably approximated as a sinusoid,

so the APS will treat all signals with bandwidth less than 30 kHz

as narrowband signals and behave as predicted. Signals with wide

bandwidth cause unpredictable operation of the APS.

3) Selection of y, the "algorithmic noise" power.

The gain of the LALE is related to y, the sum of the true noise

power and the signal power. To prevent the spectral sidelobes of

powerful signals from causing errors requires that a large LALE

gain.correspond to a signal at the threshold power. However, for

good switching performance the gain should have a high sensitivity

to power changes, which implies that a small LALE gain correspond

to the threshold power. Accordingly, a compromise is reached by

choosing a LALE gain of 0.5 to correspond to the threshold power.

For simplicity the threshold power is taken to be Pt 
= 2.5 (the

average of the maximum signal power and the minimum janmer power).

Using this information we can solve for y:

I13 .. "131 C

k .... - -.- a.-



0.5 gain at the threshold power

n Pt
2 2

+
n Pt

~ 2 y+G2I +

32 2.5
Y +L.5

1 + 32 2.5
y+ 0.5

y: Y 79.5 -. (7-1)

4) Selection of n', the length of the FIR filter.

Selection of n controls the maximum gain in the stopband of the

FIR filter and also the quality of the power spectral estimate.

The APS3 uses the LALE gain as a power spectral estimate. However,

the APS3 uses a finite length OFT to determine the gain of the

LALE. The outputs of the OFT are samples of the LALE gain, and

these samples may not coincide with the peaks in the LALE gain

that are caused by signals. If the OFT samples bracket a peak,

then the APS3 will act as if there are two smaller signals. This

effect is a combination of leakage and the "picket-fence" effect

[Ber]. The picket-fence effect is caused by the gain characteris-

tics of the bank of bandpass filters that constitute the OFT

(see Chapter 4, Eq. 4-2). If the signal is on-bin, the bandpass

j filter passes it with a gain of one, but if the signal is between

bins then the gain of the bandpass filter is 0.64. The LALE gain

can be sampled more frequently if the LALE weight vector is padded

with n'-n zeros and an n'-point OFT is used to evaluate the

132
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!
gain [Ber]. This technique of "zero-filling" reduces the picket-

fence effect. The minimum gain for an n' point OFT of an n weight

LALE is Sin( xwhere x = . Thus if a signal is present thatx 2 -

n

causes the LALE gain to peak with a value g, as n' point DFT will

Sin( -T- )
return a peak value between g and 2n' n2 g. To find tnJe

minimum allowable OFT gain we first determine that the peak gain

of the LALE for a communication signal with pow:er 2.0 (largest

power to keep) is 0.444, and that the peak gain for a jamer of

power 3.0 (smallest power to discard) is 0.545. Since

0.444 = 0.80 x 0.545, the minimum gain of the DFT must be greater

than 0.80 to avoid confusing weak jammers with strong communication

signals. From Table 7-1 we select n' = 4n because the extra gain

gives us room for a large deadband in the hysteresis threshold

device (which will reduce the error rate).

The other constraint was that the FIR filter have a low

enough maximum stopband gain. It turns out that a 4n FIR filter

has a maximum stopband gain of about -35 dB, and the requirement

0.01 -4
is for a maximum stopband gain of -- 5 x 10 or -33 dB. Thus

the 4n filter fits all of the constraints, so n' is chosen to be

256.

5) Selection of a £and a the low threshold and high threshold of

- the hysteresis device.

Once the minimum OFT gain has been determined it is possible to

find the minimum OFT output amplitude that corresponds to a

r jammer: (
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n, Minimum DFT Gain

n 0.6366

.2n 0.9003

4n 0.9745

8n 0.9936

16n 0.9984

32n 0.9996

64n 0.9999

Table 7-1.
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Min[aJ = M4in[DFT gain] x LALE gain for weakest jammer (
= 0.531

Also, the maximum DFT output due to a communication signal is:

14ax[a s  = 0.444

In the absence of other information it seems reasonable to select

the two threshold values as 1/4 of the difference between

Min[(a ] and Max[a)s (see Fig. 7-I):

a 0.466

ah 0.509

6) Selection of P.

From Eq. 5-34 the probability of error for the threshold device (
is:

P{error} VAR{SLALE}
Min{ah-Max~aSJ, Min[a ]-a}2 (7-2)

From Eq. 5-24, VAR{SLALE } < 2ni~ia, so Eq. 7-2 becomes:

P{error} < 7 60 0 p (7-3)

If we want P{error) < 1%, then:

- • j <1.3 x 10 "6  (7-4)

This value of j also guarantees the stability of the adaptive

process.
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Another constraint on ,p is the expected design cycle time.

Using Eq. 5-33, we can find E{Tc } > 2 500, which is acceptable.

If the expected design cycle time was unacceptable, -. would have

to be reduced.

This completes the design of the APS3. The design parameters for the

APS3 are summarized in Table 7-2.

j Now assume that the ja.mer powers can range from 3 to 20 000. In

this case the APS3 will not be sufficient to reject the jamners because

the stopband ripple is too large. To obtain the desired performance

I we will add a noise cancelling stage to the APS3 and thus design an

APS4. The APS3 portion of the APS4 will have the same parameters as in

Table 7-2, except that p will be 1.5 x 10- to guarantee that the small

Vi assumptions used in the analysis of the LALE remain valid (this p is

a tenth of the stability limit). The LLIMS filter used for noise cancell-

ing will have as many weights as the LALE (i.e. 64), and a i of

1.5 x 10 -. Y2 is computed from Eq. 6-6 to be 96.

This completes the design of the APS4.

Simulations of the APS3 and APS4

Both the APS3 and the APS4 were simulated on a digital computer.

Figures 7-2 through 7-5 show characteristic curves of both power

separators for a single sinusoidal input. Figure 7-2 shows output-

power versus input-power as the input power ranges from 0.1 to 10 000,

I. and Fig. 7-3 gives an expanded view of the transition region. Figure

7-4 shows gain versus input-power as the input power ranges between

0.1 and 10 000, and Fig. 7-5 gives an expanded view of the transition

region. (
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number of LALE weights n = 64

equivalent LALE noise power y = '79.5

adaption constant = 1.3 x io.6

low amplitude threshold a = 0.466

high amplitude threshold a~ = 0.509

number of FIR Filter weights n'= 256

sampling frequency fS = 20 MHz.

Table 7-2. Parameters of the APS3.
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Figures 7-2 and 7-3 show how well the APS4 controls the output

power. Also, the sharp threshold is evident, as well as the fact that

the APS4 easily meets the design goals. From Fig. 7-3 i: is possible

to determine that the APS3 meets the design goals over the limited

power range that was assumed for the design of the APS3. (The frequency

of the sinusoid used to test the power separators was chosen to give

the poorest possible results; at other frequencies the output power and

filter gain would have been lower for powerful signals.)

For comparison, Fig. 7-6 shows a gain versus input-power curve for

a LAtE power separator (APSl). The LALE was designed to have a threshold

power of 2.5 which gives the best possible signal to jaimmer enhancement.

This figure shows the very slow transition from high gain to low gain

that is characteristic of the LALE.

Figures 7-7A and 7-7B show the results of simulating te APS3 with (

many input sinusoids. In this example there are 10 input sinusoids.

Table 7-3 lists the power and frequency of these sinusoids. Figure 7-7A

shows a theoretical power spectrum of the input signal and Fig. 7-78

shows a theoretical power spectrum of the output signal. These power

spectra are computed from the power of the true input noise, the power

of the sinusoids and the gain of the APS3. Figure 7-78 shows that the

APS3 has deleted the signals with power 3 or more, and has left

unaffected the signals with power 2 or less. Table 7-3 also lists the

*. output powers at the signal frequencies to show the exact effects of the

*.APS3.

Simulations have also been used to determine the frequency

resolution of the APS3. It has been determined that a ja-mer that is

1(I .
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Frequency
(% of Nyquist) Input power Output power

12.5 2.0 2.00

16.5 3.0 0.00065

20.5 2.0 1.98

28.0 3.0 0.00029

32.0 2.0 2.00

36.0 3.0 0.00014

40.0 2.0 2.06

44.0 3.0 0.00098

48.0 2.0 2-04

55.6 3.0 0.00038

Table 7-3

-I
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within one "bin width" (i.e. a frequency of of a signal can cause

the APS3 to erroneously delete the signal. This is caused by a side-

lobe of the power spectral estimate of the jammer adding to the spectral

estimate of the weak signal and causing the total estimate to exceed the

threshold value. Thus for good performance of the APS3, the signals

should be separated by at least 1.5 bin widths (4.9% of the Nyquist

frequency for a 64 weight APS).

14
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8 SUMMARY AND CONCLUSIONS

This thesis has developed the concept of an adaptive power

separator and analyzed three implementations of a generic power

separator structure. A good example of an APS is the APS3. The APS3

uses a. LALE to analyze the input signal, and a DFT of the LALE's weight

vector to produce a power spectral estimate. .The outputs of the DFT.

will be large at the frequencies where the input signals are strong,

and small elsewhere. The DFT outputs are passed through threshold

devices that have zero output whenever their input exceeds a predeter-

mined threshold and unit output otherwise. The outputs of the threshold

devices form a desired, or ideal, frequency response. A filter with

this frequency response would pass weak signals with unit gain and

reject strong signals with zero gain. This ideal frequency response is

converted into a weight vector for a finite impulse response filter by

a design technique called frequency sampling. The frequency character-

istics of the resulting filter can be made as nearly ideal as required

by appropriately selecting the length of the filter.

Since the LALE-OFT combination gives good spectral estimates, and

since the finite impulse response filter can be made nearly ideal, the

APS3 can be designed to have nearly ideal input-to-output characteris-

,. tics. However, there are other important measures of APS performance

such as response time or frequency resolution. Also, the analysis

j assumed that the input to the APS consisted of a sum of narrowband

signals in white noise. This may accurately model many situations,

I
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such as rejection of CW jammers or interference from rotating machinery,

but simulations show that the APS3 and APS4 fail to function when the

input consists of a wideband signal in white noise. Thus the APS3 and

APS4 would provide no protection against wideband jammers.

A possible topic for future work would be the design of an APS

that could reject wideband signals as well as narrowband signals. Such

an APS might use one of the modern spectral estimation schemes, such as

maximum 1 ikel ihood or maximunk entropy, instead of the LALE-OFT combina-

tion that is used in the*APS3 and APS4.
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